

УДК 635.21.077:621.365

О МЕХАНИЗМЕ ВЛИЯНИЯ ЭЛЕКТРИЧЕСКОГО ТОКА НА МИКРООРГАНИЗМЫ

Е.М. ЗАЯЦ, А.Е.ЗАЯЦ (БАТУ)

истематическое исследование влияния электрических полей на микроорганизмы клеточного уровня начаты в конце прошлого века. На сегодня можно считать установленным влияние частоты и напряженности электрического поля, силы и продолжительности действия тока, материала токоподводящих электродов и рН среды на микроорганизмы [I]. Тем не менее в работе [2] сделан вывод об отсутствии обоснованного механизма биологического действия электрического поля на микроорганизмы. В предлагаемой работе предпринята попытка объяснить некоторые элементы механизма влияния электрического поля на микробную клетку.

Представим микробную клетку как биологический объект, состоящий из окруженной мембраной цитоплазмы, в которой происходят процессы биосинтеза и биоэнергетического запасания энергии. Выполнение этих функций сопряжено с транспортом вещества из окружающей среды в клетку и наоборот. Сочетание транспорта вещества с сохранением и автономностью внутреннего устройства клетки и обеспечивает мембрана толщиной порядка 10-9м. Разрушение мембраны приводит к уничтожению клетки. Определим величины частоты и напряженности внешнего электрического поля, нарушающие диффузионные потоки вещества через мембрану клетки, а также величину концентрации ионов вне клетки, необходимую для создания пробойной разницы потенциалов.

Рассмотрим стационарную диффузию ионов, определяющих внутриклеточные процессы. Уравнение диффузии имеет вид:

$$\frac{d^2n}{dr^2} + \frac{2dn}{rdr} = 0\tag{1}$$

с граничными условиями:

r=R, $n=n_{_I}$ - концентрация ионов на границе клетки;

 $r=_{\infty}$, $n=n_o$ - концентрация ионов в области, удаленной от клетки; $R=5\cdot 10^{-7}$ м - радиус клетки; n(r) - концентрация ионов на расстоянии r от клетки.

Решение (1) имеет вид:

$$n(r) = n_0 + \frac{(n_1 - n_0)R}{r}$$
. (2)

Характерное время установления стационарного состояния в диффузионном процессе определяют соотношением:

$$\tau_0 = \frac{R_u^2}{D}, \qquad (3)$$

где $D \approx 10^{-9} \text{ м}^2/\text{с}$ - коэффициент диффузии иона в среде; R_u - радиус диффундирующего объекта, м.

Из (3) следует, что характерная частота, т.е. частота "саморегуляции" объекта при установлении диффузионного стационарного состояния равна:

$$v_0 = \frac{1}{\tau_0} = \frac{P}{R_u^2} \approx 10^3 \dots 10^4 \, \text{FH.} (4)$$

Следовательно, в случае внешнего воздействия с частотой $V > V_0$ биологический объект не успевает прийти в равновесное состояние и возможна гибель клетки.

Оценим величину напряженности электрического поля, достаточную для воздействия на клетку. Диффузионный поток ионов через мембрану клетки с учетом ее сферической симметрии:

$$dI = -D \ ndS \tag{5}$$

$$I = D \int n dS = -4\pi R^2 D \frac{dn}{dr},$$

где dS - элемент поверхности клетки.

$$\frac{dn}{dr} = -\frac{(n_1 - n_0)R}{r^2},$$
(6)

$$\frac{dn}{dr} = -\frac{n_1 - n_0}{R} ,$$

т.e.

$$I = 4\pi R D(n_1 - n_0).$$
 (7)

С другой стороны, по определению

$$I = n_1 v S = 4\pi R^2 n_1 v ,$$

где v - средняя скорость движения иона.

С учетом (7) и (8) получим

$$v = \frac{n_1 - n_0}{n_1} \frac{D}{R} \,. \tag{9}$$

Под воздействием внешнего поля ион приобретает дрейфовую скорость

$$v_{o} = bE, \qquad (10)$$

где b - подвижность иона в среде, m^2/cB ; E - направленность электрического поля B/m.

Прикладывая внешнее электрическое поле, способное изменить собственную диффузионную скорость ионов *v*, т.е. нарушить систему жизнеобеспечения микроорганизма, можно ожидать бактерицидное действие электрического поля.

Условие, при котором возможно нарушение вирулентности микробной клетки, имеет вид:

$$v_{o} \ge v$$
 (11)

Отметим подвижность ионов:

 $b_{K}+=689 \cdot 10^{-10};$ $b_{H}+=450 \cdot 10^{-10};$ $b_{H}+=3263 \cdot 10^{-10} \text{ M}^{2}/\text{c} \cdot \text{B}.$ Используя (9) и (10) получим

$$E > \frac{n_1 - n_0}{n_1} \frac{D}{Rb} \ . \tag{12}$$

При $n_0 = 0 E > 10^5$ В/м. Полученный результат с достаточно высокой степенью точности совпадает с данными работ, цитируемых в [1].

Концентрация ионов внутри живой клетки может в десятки раз отличаться от их концентрации во внешней среде, причем наблюдаются градиенты концентрации ионов разных знаков. Это связано с динамикой ионного транспорта через мембрану и зависит от свойств конкретной клетки. Разность концентрации ионов вне и внутри клетки создает разность потенциалов между цитоплазмой и окружающей средой в 50...70мВ. Эта разность потенциалов меньше напряжения пробоя мембраны (100....200мВ) и, по-видимому,

безвредна для нее.

Рассчитаем градиент концентрации ионов на границе клетки, при создании которого возникает разность потенциалов, достаточная для пробоя мембраны.

Как показано в (9)

$$\overline{v} = \frac{n}{n_1} \frac{D}{R},\tag{13}$$

где n/n_1 - градиент концентрации ионов на мембране клетки. В свою очередь дрейфовая скорость иона связана с разностью потенциалов:

$$v_o \approx b \frac{\varphi}{I},$$
 (14)

где *l* - расстояние между областями с равными потенциалами, м.

Примем l = 1,5 h, где h - толщина мембраны.

Из (13) и (14) следует:

$$\frac{n}{n_1}\frac{D}{R} = b\frac{\varphi}{l},\tag{15}$$

$$\varphi = \frac{n}{n} \frac{Dl}{Rh} \,. \tag{16}$$

Выражение (16) позволяет рассчитать градиент концентрации ионов вне и внутри клетки, обеспечивающий требуемую разность потенциалов φ .

Положим, что пробивная разность потенциалов для мембраны $\phi_{np} = 150$ мВ. Тогда из (16) получим необходимый градиент концентрации для соответствующих ионов:

$$K^{+}$$
 $n/n_1 = 350$
 Na^{+} $n/n_1 = 230$
 H^{+} $n/n_1 = 1500$

Используя уравнение Нернста:

$$\varphi = \frac{RT}{F} \ln \frac{c_1}{c_2}$$

при $c_1/c_2 = 230$ получим $\phi = 144$ мВ, т.е. результаты практи-

чески илентичны.

Выражение (16) позволяет по известному градиенту n/n_1 рассчитать возникающую при этом разность потенциалов, причем градиент концентрации может быть направлен в обе стороны .т.е. меняя ионный состав среды, например, рН можно менять электрический заряд и поведение клетки.

Соотношение (16) получено в предположении ионного транспорта лишь одного вида ионов через мембрану. В общем случае (16) имеет вид:

$$\varphi = \frac{Dl}{Rb} \left[\frac{n_{(1)}}{n} + \dots + \frac{n_{(n)}}{n} \right], (17)$$

где n(i)/n - градиент i-го вида ионов, участвующих в транспорте через мембрану.

Таким образом, в предлагаемой работе высказано предположение, что транспорт ионов, обусловливающий нормальное функционирование биологической клетки, зависит от величины внешнего (не зависящего от концентрации ионов внутри клетки) и внутреннего (обусловленного зарядом ионов вокруг и в самой клетке) электрического поля.

В рамках этого предположения на основе решения уравнения стационарной диффузии и определения величины ионного потока через мембрану клетки получены выражения для расчета частоты и напряженности внешнего электрического поля, а также градиента концентрации ионов на границах мембраны, при которых может происходить нарушение ионной системы питания клетки.

ЛИТЕРАТУРА

- 1. Кудельский Л. А., Савлук О.С., Дейнага Е.Ю. Влияние электрического поля на процессы обеззараживания воды. К.: "Знание", 1980.
- 2. Волькенштейн М.В. Биофизика. М.: Наука, 1981.

Линейные нормы расхода топлива на автомобили и оборудование

МАРКА АВТОМОБИЛЯ И ОБОРУДОВАНИЯ	вид ТОПЛИВА	НОРМА РАСХОДА	
		л/100 км л/маш-час	
Легковой автомобиль Ford Escort 1,3	бензин	8,0 -	
Легковой автомобиль Ford Escort 1,6	бензин	9,6	
Легковой автомобиль Ford Escort 1,8Д	дизельное	7,0 -	
Легковой автомобиль Ford Mondeo 1,6i	бензин	9,2	
Легковой автомобиль Ford Mondeo 1,8ТД	дизельное	7,2 -	
Легковой автомобиль Ford Scorpio 2.9i	бензин	13,7	
Легковой автомобиль Mercedes-Benz 190 2. 0i	бензин	9,0 -	
Легковой автомобиль Mercedes-Benz 200	бензин	9,2	
Легковой автомобиль Mercedes-Benz 200Д	дизельное	8,8 -	
Легковой автомобиль Mercedes-Benz 300Д	дизельное	9,4 -	
Легковой автомобиль Mercedes-Benz G300	дизельное	12,0 -	
Легковой автомобиль Mercedes-BenzE 320i	бензин	13,5	
Легковой автомобиль BMW-520 i 2.0	бензин	10,0 -	
Легковой автомобиль BMW-525i (123 квт)	бензин	11,9	
Легковой автомобиль BMW-530 3.0i	бензин	13,4 -	
Легковой автомобиль Opel Ascona 1.3	бензин	8,2 -	
Легковой автомобиль Opel Cadett 1.6 i	бензин	7,8 -	
Легковой автомобиль Opel Cadett 1.7 Д	дизельное	5,8 -	
Легковой автомобиль Opel Vectra 1.6 i	бензин	7,8	
Легковой автомобиль Opel Vectra 1.8i	бензин	8,4 -	
Легковой автомобиль Opel Vectra 20	бензин	9,1	
Легковой автомобиль Opel Senator 3.0 i	бензин	13.0	
Легковой автомобиль Volkswagen Passat 1.6	бензин	8,5 -	
Легковой автомобиль Volkswagen Passat 1. 8T	бензин	10,1 -	
Легковой автомобиль Volkswagen Passat 1.9 ТД	дизельное	7,5 -	
Легковой автомобиль Volkswagen Jetta 1.8i	бензин	8,6	
Легковой автомобиль Peugcot 406 2.0	бензин	10,0	
Легковой автомобиль Peugcot 605 2.0 (84 квт)	бензин	10,4	
Легковой автомобиль Peugcot 605 3.0i (123 квт)	бензин	12,9 -	
Легковой автомобиль Peugeot 605 3 0i (147 квт)	бензин	13,5	
Легковой автомобиль Volvo S-40 2.0i	бензин	10,8 -	
Легковой автомобиль Volvo-850 T-5 2.3i	бензин	12,5	
Легковой автомобиль Toyota Carina 1.6i	бензин	8,9	
Легковой автомобиль Toyota Corolla 1.6i	бензин	8,9 -	
Легковой автомобиль Alfa Romeo Sport Wagon 1.3	бензин	8,5	
Легковой автомобиль Alfa Romeo 164L 3.0i	бензин	12,7	
Легковой автомобиль Nissan Patrol 3.3 Д	дизельное	12,0	
Легковой автомобиль Lancia Thema 3.0i	бензин	12,0	
Легковой автомобиль Scoda Favorit 135	бензин		
Легковой автомобиль Rasez Daewoo 1.5	бензин	8,8 - 9.0 -	
Легковой автомобиль Fiat Punto 1.1i	бензин		
Легковой автомобиль МЗМА-2141 с двиг. УМЗ-3313	бензин	8,0 -	
Легковой автомобиль Daewoo Nexia 1.5i	бензин	10,5	
Легковой автомобиль ВАЗ-21044 1,7;	бензин	8,4	
легковой автомобиль БАЗ-21044 1,7 ₁ Автобус ПАЗ-3207		8,8 -	
	сжижен. газ	47,3 -	
Автобус Neoplan 216 Н с двиг. Скания	дизельное	32,0	
Микроавтобус Volkswagen Transporter 1,6 Д	дизельное	8,6	
Микроавтобус Volkswagen Transporter 2,0 I	бензин	13,5	
Микроавтобус Volkswagen Caravella 2,0	бензин	13,5 -	
Микроавтобус Volkswagen Caravella 2,5	бензин	14,7	
Микроавтобус Volkswagen Sharan 2,0i	бензин	11,5 -	

МАРКА АВТОМОБИЛЯ И ОБОРУДОВАНИЯ	вид ТОПЛИВА	НОРМА РАСХОДА	
		л/100 км	л/маш-час
Микроавтобус Ford Transit 2.5 Д (9 и 12 мест)	дизельное	10,0	_
Микроавтобус Ford Transit 2,5 ТД (9 мест)	дизельное	11,2	-
Микроавтобус Mercedes-Benz 308 Д (14мест)	дизельное	10,8	-
Микроавтобус Mercedes-Benz 314 E (Sprinter) (9 мест)	бензин	13,9	-
Микроавтобус Тоуоtа Hiace 2,5 Д (9 мест)	дизельное	9,5	-
Микроавтобус ГАЗ-3221 "Газель" (9мест)	бензин	16,3	-
Микроавтобус ГАЗ-32213"Газель"(13мест)	бензин	17,0	-
Седельный тягач DAF - 95/400	дизельное	25,5	-
Седельный тягач Volvo FH - 12	дизельное	25,0	-
Седельный тягач Volvo F - 12	дизельное	24,5	-
Седельный тягач Yveco 190-36	дизельное	24,1	_
Седельный тягач МАЗ - 64229 (дв. ЯМЗ - 238Н форсир.)	дизельное	34,0	-
Грузовой автомобиль - фургон Ford Transit 2,0	бензин	15,2	-
Грузовой автомобиль - фургон Ford Escort VAN 1,3	бензин	8,0	_
Грузовой автомобиль - фургон Iveco 3510	дизельное	11,0	-
Грузовой автомобиль - фургон Iveco 4912 TD	дизельное	10,3	_
Грузовой автомобиль - фургон Volkswagen LT - 50	дизельное	13,5	_
Грузовой автомобиль - фургон Mazda E220 0	дизельное	9,0	_
Грузовой автомобиль - фургон Magirus Deutsch 130	дизельное	14,6	-
Грузовой автомобиль - фургон мам - 12.192	дизельное	19,7	
Грузовой автомобиль - фургон мам - 19.321	дизельное	28,1	_
Грузовой автомобиль - фургон мам - 24.292	дизельное	26,9	_
Грузовой автомобиль-фургон Mercedes-Benz 709 D	дизельное	16,0	_
Грузовой автомобиль-фургон Mercedes-Benz 809 D	дизельное	15,0	_
Грузовой автомобиль - рефрижератор Mercedes - Benz 1617	дизельное	20,7	_
Грузовой автомобиль - пикан Scoda Pickup	бензин	9,2	_
Грузовой автомобиль - пикап Scoda Forman Plus	бензин	8,1	_
Грузовой автомобиль - фургон Fiat Ducato 2,5D	дизельное	8,5	_
Грузовой автомобиль - фургон ЗИЛ - 43317В	дизельное	24.5	_
Грузовой автомобиль автовоз Mercedes - Benz 1624	дизельное	28,0	
Грузовой автомобиль с цельнометаллическим фургоном		20,0	
ГАЗ - 2705 " Газель"	бензин	15,6	_
Грузопассажирский автомобиль DAF-400	дизельное	15,0	_
Специальный грузопассажирский автомобиль			
ГАЗ-33021 "Газель"	бензин	15,6	_
Спецавтомобиль с экскаватором УДС-114 А на шасси		,.	
Tatra- 815	дизельное	42,0	7,3
-отопитель	дизельное	0,9	-
Спецавтомобиль с экскаватором 4421 на шасси КрАЗ-255Б1А	дизельное	51,0	9.2
Спецавтомобиль с автокраном КС-3574 на шасси		2.,0	7. -
УрАЛ-5557-01	дизельное	46,0	8,0
Специальный грузовой автомобиль-фургон ГАЗ-4301	дизельное	21,6	-
-отопитель фургона	дизельное	•	0,8
Лесовоз MA3-54352 с манипулятором Loglift-65	дизельное	45,0	5,0
Бензовоз АТЗ-4,4 на шасси ЗИЛ-131	бензин	48,0	-
- наполнение (слив) 1 цистерны	бензин		3,5
Бензовоз УрАЛ-375 (АЦ-5,5)	бензин	61,0	-
- наполнение (слив) 1 цистерны	бензин	•	4,0
Транспортер-тягач ГТ-СМ-1	бензин	80,0	-
Транспортер-тягач ГАЗ-3403-11	бензин	80,0	-
Экскаватор ЭО4225-02	дизельное	•	16,0
Компрессорная станция ПКСА-5,25 ДУ	дизельное	•	6,5
		•	20,0
Компрессор w2900	дизельное	•	20.0