

Ассоциация технологов-машиностроителей Украины Академия технологических наук Украины Институт сверхтвердых материалов им. В.Н. Бакуля НАН Украины

Киевский национальный университет технологий и дизайна Украинский государственный университет железнодорожного транспорта

> ООО «НПП РЕММАШ» ООО «ТМ.ВЕЛТЕК» ДП «БЕСТ-БИЗНЕС»

ПАО «Ильницкий завод механического сварочного оборудования» Ассоциация инженеров-трибологов России Институт металлургии и материаловедения им. А. А. Байкова РАН Брянский государственный технический университет ГНПО «Центр» НАН Беларуси Белорусский национальный технический университет Машиностроительный факультет Белградского университета Издательство «Инновационное машиностроение»

СОВРЕМЕННЫЕ ПРОБЛЕМЫ ПРОИЗВОДСТВА И РЕМОНТА В ПРОМЫШЛЕННОСТИ И НА ТРАНСПОРТЕ

Материалы 17-го Международного научно-технического семинара (20–24 февраля 2017 г., г. Свалява, Карпаты)

Современные проблемы производства и ремонта в промышленности и на транспорте : Материалы 17-го Международного научно-технического семинара, 20–24 февраля 2017 г., г. Свалява. – Киев : ATM Украины, 2017. – 312 с.

Тематика семинара:

- Современные тенденции развития технологии машиностроения
- Подготовка производства как основа создания конкурентоспособной продукции
- Состояние и перспективы развития заготовительного производства
- Совершенствование технологий механической и физико-технической обработки поверхностей трения и деталей машин
- Упрочняющие технологии и покрытия
- Современные технологии и оборудование в сборочном и сварочном производстве
- Ремонт и восстановление деталей машин в промышленности и на транспорте, оборудование для изготовления, ремонта и восстановления
- Технологическое управление качеством и эксплуатационными свойствами изделий
- Технический контроль и диагностика в машино- и приборостроении
- Экологические проблемы и их решения в современном производстве

Материалы представлены в авторской редакции

© АТМ Украины, 2017 г.

Литература

- 1. Панченко В.М. Исследование технологических возможностей магнитно-абразивной обработки для повышения эксплуатационных свойств деталей машин: автореф. дис.... канд. техн. наук. Брянск: БИТМ, 1976. 24 с.
- 2. Технология и оборудование магнитно-абразивной обработки металлических поверхностей различного профиля / Л.М. Акулович, Л.Е. Сергеев. Мн. : БГАТУ, 2013. 372 с.

Акулович Л.М., Сергеев Л.Е., Сенчуров Е.В., Дубновицкий С.К. Белорусский государственный аграрный технический университет, Минск, Беларусь

СМАЗОЧНО-ОХЛАЖДАЮЩЕЕ ТЕХНОЛОГИЧЕСКОЕ СРЕДСТВО НА ОСНОВЕ ОКСИЭТИЛИРОВАННЫХ АЛКИЛФЕНОЛОВ ДЛЯ ФИНИШНОЙ АБРАЗИВНОЙ ОБРАБОТКИ АЛЮМИНИЕВЫХ СПЛАВОВ В МАГНИТНОМ ПОЛЕ

Известно, адсорбция ЧТО молекул присадок смазочноохлаждающих технологических средств (СОТС) играет важную роль в процессе резания различных материалов при механической обработке деталей машин. Также установлено, что граничный слой молекул образуется путем реализации двух основных механизмов: физико-химические процессы (адсорбция) и химическая поверхностная реакция [1]. Проведенный анализ зоны трения «инструмент – обрабатываемый материал» показывает, что их контактирование следует рассматривать как проявление одной из характеристик открытой неравновесной термодинамической системы [2]. Проявлением данной системы является возникновение вторичной диссипативной гетерогенности, которая в процессе трения способствует структурной приспосабливаемости (СП) алюминиевых сплавов, что приводит к формированию вторичных структур (ВС), выполняющих защитные функции, ограничивая взаимодействие трущихся тел и уменьшая его интенсивность. Устойчивость явления СП определяется динамическим равновесием и саморегулированием процессов образования ВС [3]. Вследствие этого, вопрос механической обработки цветных сплавов, в том числе алюминиевых сплавов, имеет

высокую значимость, так как его решение влияет на обеспечение технико-экономических показателей выпускаемой продукции.

Одной из финишных операций механической обработки цветных сплавов является магнитно-абразивная обработка (MAO) [4–5]. Ее особенностью служит возможность регулирования жесткости инструмента, производящего размерный и массовый съем материала, путем создания ферроабразивной «щетки» с подвижно-координированным зерном. Связку для такого инструмента осуществляет энергия электромагнитного поля. Диапазон достигаемых температур в зоне обработки составляет 400–450°C, что требует применения СОТС [6].

Традиционно в качестве агентов СОТС используются растворы поверхностно-активных веществ (ПАВ), высокий уровень моющих и смазывающих свойств которых обеспечивает необходимые качественные показатели обработки. Однако их режущая способность невелика в сравнении с эмульсолами, которые обеспечивают повышение коэффициента трения в зоне резания и уменьшение степени подвижности зерна ферроабразивного порошка (ФАП). Вместе с тем стойкость инструмента при использовании эмульсолов резко снижается. Таким образом, задача повышения эффективности модели ПАВ и ее структурирования для МАО алюминиевых сплавов заключается в необходимости роста режущей способности СОТС. Предлагаемым решением поставленной задачи является создание либо более производительной бинарной системы – ПАВ + вода, либо образование более сложной системы путем введения соответствующих присадок.

В производстве бинарных систем широкое применение находит такой продукт, как неонол, представляющий комплексное ПАВ в виде оксиэтилированных алкилфенолов на основе триммеров пропилена, которые являются технической смесью полиэтиленгликолевых эфиров моноалкилфенолов следующего состава:

$$C_9H_{19}C_6H_4O(C_2H_4O)_nH$$
,

где C_9H_{19} — алкильный радикал изононил, присоединенный к фенолу преимущественно в пара-положении к гидроксильной группе; n — усредненное число молей окиси этилена, присоединенное к одному молю алкилфенолов.

Проведенные исследования данной бинарной системы показали, что использование 3-5% водного раствора неонола обеспечивает необходимую результативность процесса МАО алюминиевых сплавов, однако по истечению определенного периода времени возни-

кающая структурная приспосабливаемость препятствует дальнейшему съему материала. Одним из решений возникшей проблемы является создание тройной системы ПАВ путем использования в качестве присадки триэтаноламинового мыла синтетических жирных кислот (СЖК) фракции C_7 - C_9 , которое обеспечивает наличие мезофазы. Данное соединение характеризуется полифункциональностью, а также высокой скоростью отклика на изменение условий обработки методом МАО, Также обоснованием использования триэтаноламинового мыла СЖК фракции C_7 - C_9 служит его способность к мезоморфизму, который обеспечивает возможность формирования надмолекулярных органических ансамблей (адсорбции молекул) и, в конечном счете, проявления синергетизма по режущей способности данного состава СОТС. Такая способность для роста эффективности процесса МАО алюминиевых сплавов определяется температурно-концентрационным районом существования мезофазного состояния. Данная присадка должна нивелировать скачок вязкости в зоне гелеобразования ПАВ, что благоприятно сказывается на моющей, смазывающей и, главное, регулирующей способности СОТС. При достижении необходимого уровня концентрации и образования требуемого показателя вязкости коэффициент трения между контактирующими телами – «инструмент – обрабатываемый материал» – может плавно изменяться и приобретать то значение, которое оптимально для указанных выше способностей СОТС. Зона гелеобразования в этих системах не имеет того флуктуационного перехода, что вызывает критическое поведение в связи с лавинообразным ростом вязкоупругих характеристик среды.

Испытания известного (СинМА-1) и предлагаемых составов СОТС проводились при следующих режимах и параметрах процесса MAO: магнитная индукция, B = 1,1 T; скорость резания, $V_{\rm p} = 2.5 \; {\rm m/c};$ скорость осцилляции, $V_{\rm o} = 0.12 \; {\rm m/c};$ амплитуда осцилляции, A = 1 мм; величина рабочего зазора, $\delta = 1$ мм; время обработки, t = 45 с; ФАП – Ж15КТ ТУ 6-03-09-483-81, размерность зерна, $\Delta = 200\text{--}315$ мкм. В качестве образцов использовались втулки из сплавов алюминиевых АМг6 И Д16 ΓΟСΤ $D \times d \times L = 36 \times 32 \times 32$ мм, которые крепились на ферромагнитной оправке. Исходная шероховатость поверхности образца $Ra_1 = 1,25$ -1,6 мм. В процессе проведения исследований оценивался массовый съем материала (ΔG , мг) и достигаемая шероховатость поверхности (Ra_2, MKM) . Результаты испытаний представлены в табл. 1.

Таблица 1 – Результаты обработки образцов

Составы СОТС	Обрабатываемый материал			
	АМг6		Д16	
	ΔG , мг	Ra_2 , мкм	ΔG , мг	Ra_2 , мкм
СинМа-1	40,0	0,36	47,0	0,43
1	43,0	0,37	49,0	0,34
2	50,0	0,22	62,0	0,27
3	45,0	0,41	52,0	0,38

Анализ результатов показывает, что применение варианта СОТС №2, представленного в табл. 1, обеспечивает увеличение производительности процесса МАО в 1,5–1,6 раза и снижение шероховатости в 1,5–2,0 раза. Разработана рецептура нового вида СОТС для МАО алюминиевых сплавов его приготовления и установлено повышение производительности процесса резания за счет проявления синергизма при соединении компонентов предлагаемого СОТС.

Литература

- 1. Усольцева, Н.В. Лиотронные жидкие кристаллы. Иваново: ИвГУ, 1994. 220 с.
- 2. Бершадский, Л.И. Структурная термодинамика трибосистем. К.: Знание, 1990. 254 с.
- 3. Гершман, И.С. Реализация диссипативной самоорганизации поверхностей трения в трибосистемах // Трение и износ. 1995. Т. 16, №1. С. 61—70.
- 4. Барон, Ю.М. Магнитно-абразивная обработка изделий и режущего инструмента. Л.: Машиностроение, 1986. 236 с.
- 5. Технологические основы обработки изделий в магнитном поле: монография / П.И. Ящерицын, Л.М. Кожуро, А.П. Ракомсин и др. Мн.: ФТИ, 1997. 415 с.
- 6. Эффективность магнитно-абразивной обработки / Н.Я. Скворчевский, Э.Н. Федорович, П.И. Ящерицын. Мн.: Навука і тэніка, 1991. 216 с.

СОДЕРЖАНИЕ

Абдуллаева М.А., Жалилов Л.С. ЗАЩИТА ОКРУЖАЮЩЕЙ СРЕДЫ ОТ ВРЕДНЫХ ВЫБРОСОВ ТЭС	3
Аверченков В.И., Надуваев В.В., Фролов Е.Н. ОТДЕЛОЧНО-УПРОЧНЯЮЩАЯ ОБРАБОТКА ДЕТАЛЕЙ МАШИН И ЭЛЕМЕНТОВ ТЕХНОЛОГИЧЕСКОЙ ОСНАСТКИ	10
Аверченков В.И, Надуваев В.В., Фролов Е.Н. ПРОИЗВОДСТВО ПОЛИКРИСТАЛЛИЧЕСКИХ СВЕРХТВЕРДЫХ МАТЕРИАЛОВ НА ОСНОВЕ СИНТЕТИЧЕСКИХ НАНОАЛМАЗОВ ПОЛУЧАЕМЫХ ДЕТОНАЦИОННЫМ СПОСОБОМ	12
Акулович Л.М., Литвин С.М. ВЛИЯНИЕ СКОРОСТИ РЕЗАНИЯ ПРИ МАГНИТНО-АБРАЗИВНОЙ ОБРАБОТКЕ НА МИКРОТВЕРДОСТЬ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ	15
Акулович Л.М., Сергеев Л.Е., Сенчуров Е.В., Дубновицкий С.К. СМАЗОЧНО-ОХЛАЖДАЮЩЕЕ ТЕХНОЛОГИЧЕСКОЕ СРЕДСТВО НА ОСНОВЕ ОКСИЭТИЛИРОВАННЫХ АЛКИЛФЕНОЛОВ ДЛЯ ФИНИШНОЙ АБРАЗИВНОЙ ОБРАБОТКИ АЛЮМИНИЕВЫХ СПЛАВОВ В МАГНИТНОМ ПОЛЕ	18
Анкуда С.Н., Хейфец И.М., Федоров В.П. МОДЕЛИРОВАНИЕ И УПРАВЛЕНИЕ ТЕХНОЛОГИЧЕСКИМИ СИСТЕМАМИ С ПРИМЕНЕНИЕМ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА	22
Бажин А.Г., Погудин С.А. ОБЕСПЕЧЕНИЕ КАЧЕСТВА СОЕДИНЕНИЙ С ТОНКОСТЕННОЙ ДЕТАЛЬЮ СЛОЖНОГО ПРОФИЛЯ	26
Балицкая Н.А., Крижановский В.Б., Мельничук П.П., Москвин П.П., Рудницкий В.А. МОНОФРАКТАЛЬНЫЙ АНАЛИЗ ПОВЕРХНОСТНОГО РЕЛЬЕФА ПЛОСКОСТЕЙ, ФОРМИРУЮЩЕГОСЯ В РЕЗУЛЬТАТЕ ТОРЦЕВОГО ФРЕЗЕРОВАНИЯ	29
Білякович О.М., Варюхно В.В., Личик В.І. ДО ПИТАННЯ ОЦІНКИ ЗНОШУВАЛЬНИХ ПРОЦЕСІВ У ТРИБОСПОЛУ- ЧЕННЯХ В УМОВАХ ТРИВАЛОЇ ЕКСПЛУАТАЦІЇ МАСТИЛЬНИХ МАТЕРІАЛІВ	31
Бойко М.Н., Горбунов Д.А., Кривощеков В.Е. ОРГАНИЗАЦИЯ ПРОЦЕССОВ УТИЛИЗАЦИИ МОРСКИХ СУДОВ В СТРАНАХ ЕВРОПЕЙСКОГО СОЮЗА	35