кладные аспекты кормления сельскохозяйственных животных; материалы международной научно-практической конференции. ФАНО России, ФГБНУ ВИЖ. Дубровицы. 2018. С. 67-70.

- 2. Методические рекомендации по проектированию систем удаления, обработки, обеззараживания, хранения и утилизации навоза и помёта. РД-АПК 3.10.15.01-17. М. 2017. 153 с.
- 3. Гриднев П. И. Гриднева Т. Т. Спотару Ю. Ю. Ресурсосберегающие экологически безопасные системы утилизации навоза / LAP LAMBERT Academic Publishing. 2016. 97 с.
- 4. Гриднев П. И., Карпов А. В., Карпов В. П. Механизм перемещения устройства для уборки навоза в животноводческих помещениях // Патент России № 2402201. 27.10.2010. Бюл. № 30.
- 5. Гриднев П. И., Карпов В. П. Механизм реверса устройства для уборки навоза в животноводческих помещениях / Патент России № 2290789, 10.01.2007. Бюл. №1.
- 6. Шведов А. А., Гриднев И. И., Гриднева Т. Т., Спотару Ю. Ю. Устройство для уборки навоза // Патент Россин № 2622725. 19.06.2017. Бюл. № 17.
- 7. Гриднев П. И., Гриднева Т. Т., Шведов А. А. Устройство для уборки навоза // Патент России № 2555831. 10.07.2015. Бюл. № 8.
- 8. Протокол № 09-8409 (4020373) приёмочных испытаний гидрофицированной скреперной установки СГ-2. Министерство сельского хозяйства Российской федерации. ФГУ «Подольская государственная зональная машинои-спытательная станция». Климовск. 2009.
- 9.Протокол № 09-01-17 приёмочных испытаний штангового транспортёра для уборки навоза ТШ-1. Министерство сельского хозяйства Российской федерации. ФГУ «Подольская государственная зональная машинонспытательная станция». Климовск. 2017.

УДК 636.2.085.55-026.772

Поступила в редакцию 10.08.2019 Received 10.08.2019

В. Ф. Радчиков¹, Т. Л. Сапсалева¹, В. И. Передня², Е. Л. Жилич², В. А. Люндышев³, В. И. Карповский⁴, В. А. Трокоз⁴, М. М. Брошков⁵

[†]РУП «Научно-практический центр Национальной академии паук Беларуси по животноводству»,

г. Жодино, Республика Беларусь,

e-mail: labkrs@mail.ru

²РУП «НПЦ НАН Беларуси по механизации сельского хозяйства»,

г. Минск, Республика Беларусь,

e-mail: npc mol@mail.ru

³УО «Белорусский государственный аграрный технический университет»,

г. Минск, Республика Беларусь,

e-mail: lion.vlad1959@mail.ru

4Национальный университет биоресурсов и природопользования Украины,

г. Киев, Украина,

e-mail: labkrs@mail.ru

³Международный гуманитарный университет,

г. Одесса, Украина

ПОВЫШЕНИЕ ПРОДУКТИВНОСТИ МОЛОДНЯКА КРУПНОГО РОГАТОГО СКОТА ПУТЁМ СКАРМЛИВАНИЯ БИОЛОГИЧЕСКИ АКТИВНОЙ ДОБАВКИ

Скармливание молодняку крупного рогатого скота комбикормов с включением 0,1% биологически активной добавки «Кормомикс» оказывает положительное влияние на переваримость питательных веществ кормов: повысилась переваримость сухого и органического веществ соответственно — на 4,8 и 4,0 п. п., БЭВ — на 3,3, жира — на 0,7, протеина — на 3,7; клетчатки на 6,8 процентных пунктов, что позволило получить 924 г прироста живой массы в сутки или на 5,1% выше контрольного показателя при снижении затрат энергии на прирост — на 4,3% и кормов — на 2,5%, снизить себестоимость продукции выращивания на 3,3%.

Ключевые слова: бычки, корма, комбикорм, биологически активная добавка, переваримость, состав крови, продуктивность, себестоимость

V. F. Rafchicov¹, T. L. Sapsaleva¹, V. I. Perednya², E. L. Zilich², V. A. Lundushev³, V. I. Karpovski⁴, V. A. Trokoz⁴, M. M. Broshkov⁵

IRUE «Scientific Practical Centre of Belarus National Academy of Sciences on Animal Breeding».

Zhodino, Belarus,
e-mail: labkrs(@mail.ru

RUE «SPC NAS of Belarus for Agriculture Mechanization»,
e-mail: npc_mol@mail.ru

Belarusian State Agrarian Technical University»,
Minsk, Belarus,
e-mail: lion.vlad1959@mail.ru

National University of Life and Environmental Scieences of Ukraine,
Kiev, Ukraine,
e-mail: labkrs(@mail.ru

Odessa, Ukraine,
e-mail: labkrs(@mail.ru

labkrs(@mail.ru

labkrs(@mail.ru

INCREASING PRODUCTIVITY OF YOUNG LARGE CATTLE BY FEEDING BIOLOGICALLY ACTIVE ADDITIVE

Feeding of young cattle of mixed fodders with inclusion of 0.1% of biologically active additive "Kormomix" has a positive effect on digestion of fodder nutrients: the digestion of dry and organic substances increased by 4.8 and 4.0 cl., BEV – by 3.3, fat – by 0.7, protein – by 3.7; Fiber by 6.8 percentage points, allowed to obtain 924 g of live mass growth per day or by 5.1% higher than the control indicator with reduction of energy costs for growth – by 4.3% and fodder – by 2.5%., to reduce the cost of cultivation products by 3.3%.

Keywords: bulls, fodder, combine, biologically active additive, transportability, blood composition, productivity, prime cost.

Введение

Увеличение производства молока и мяса во многом зависит от кормления животных рационами, сбалансированными по всем питательным, минеральным и биологически активным веществам [1–4].

Корма в структуре затрат на продукцию выращивания крупного рогатого скота занимают более 60%, поэтому они играют основную роль в себестоимости прироста. Отсюда следует, что кормовой фактор является одним из основных определяющих показателей продуктивности животных, эффективности использования кормов и рентабельности производства продукции [5–7].

Для интенсификации отрасли скотоводства необходимо не просто увеличить объемы производства кормов, но и повысить в сухом веществе рациона концентрацию обменной энергии, протеина и других питательных веществах [8–10].

Одной из причин низкого использования корма является недостаточно полное переваривание его в пищеварительном аппарате животных. Это относится, главным образом, к кормам растительного происхождения, что объясняется содержанием в них сложных полисахаридных комплексов, в частности, целлюлозы [11, 12]. Как известно, около одной трети органического вещества, поступающего в организм с кормом, обычно не переваривается животными. Снижение этих потерь только на 2—3% позволяет получить сотни тонн дополнительной продукции. Одним из путей решения этой задачи, как указывают многочисленные литературные данные, является добавление в корм животным ферментных препаратов микробного происхождения. Особенно актуально применение биологически активных веществ в тех случаях, когда рационы не соответствуют получению высоких приростов и не сбалансированы по энергии и протеину [13, 14].

Таким образом, ферменты играют исключительно важную роль в обменных процессах любого биологического организма и, тем самым, могут с успехом использоваться в лечении различных болезней, а также для стимуляции пищеварительных процессов. Использование ферментных препаратов является одним из технологических приемов направленного влияния на процессы, определяющие продуктивное действие кормов, что позволяет при относительно небольших затратах повысить продуктивность животных и получить более конкурентоспособную продукцию.

Цель исследований

Установить эффективность использования биологически активной добавки «Кормомикс» в кормлении молодняка крупного рогатого скота, влияние её на переваримость, усвоение питательных веществ кормов и продуктивность животных.

Основная часть

Для решения поставленной цели проведены научно-хозяйственный и физиологический опыты по определению эффективности скармливания биологически активной добавки «Кормомикс» молодняку крупного рогатого скота.

Опыты проводились на двух группах животных. Различия в кормлении заключались в том, что в научно-хозяйственном и физиологическом опытах молодняку II опытной группы скармливали биологически активную добавку «Кормомикс», путем равномерного внесения и последующего тщательного перемешивания в дозе 1000 г на 1 т комбикорма.

В опытах определяли:

- поедаемость кормов рационов путем проведения контрольного кормления каждые 10 дней;
- продуктивность выращиваемого молодняка путем проведения ежемесячных индивидуальных контрольных взвешиваний с последующим расчетом на основании полученных данных валового и среднесуточных приростов, а также затрат кормов на получение прироста.

Физиологический опыт проведен на молодняке крупного рогатого скота в возрасте 12–13 мес. Основными кормами рациона являлись кукурузный силос и комбикорм КР-3.

Результаты исследований

На основании потребления питательных веществ кормов и выделения их с продуктами обмена рассчитаны коэффициенты переваримости (таблица 1).

Показатель	Группа		
	ı	11	
Сухое вещество	63,3±1,2	68,1±1,8	
Органическое вещество	66,5±1,1	70,5±1,7	
БЭВ	70,9±1,1	74,2±1,9	
Жир	73,3±3,8	74,0±2,8	
Протеин	68,4±3,0	72,1±1,0	
Клетчатка	52,8±1,5	59,6±2,9	

Таблица 1. – Переваримость питательных веществ,%

В результате расчета переваримости питательных веществ установлено, что животные опытной группы значительно превосходили сверстников из контрольной по всем показателям. Так, переваримость сухого и органического веществ рационов опытной группы оказалась выше соответственно на 4,8 и 4,0 п.п., БЭВ — на 3,3, жира — на 0,7, протеина — на 3,7; клетчатки на 6,8 п.п., что указывает на высокую активность целлюлозолитических ферментов позволивших повысить переваримость клетчатки.

По усвоению азота также отмечены значительные различия между подопытными животными (таблица 2).

Разность в потреблении с кормом этого элемента незначительная, на 3,5 г выше в опытной. Выделение с калом ниже в опытной на 9%, в результате отложено элемента в теле животных на 3,5% больше.

При скармливания Кормомикса по использованию кальция и фосфора подопытными бычками также имелись различия (таблица 3). Так, животные опытной группы на 7% потребление его меньше, однако усвоение его из корма было выше, чем у контрольных бычков на 16%, в результате отложение от принятого составило 20,0% против 11,3% в контроле.

Таблица 2. – Баланс и использование азота

Показатель	Группа		
	1	11	
Поступило с кормом, г	111,62	114,10	
Выделено с калом, г	35,14	31,74	
Усвоено, г	76,48	82,35	
Выделено с мочой, г	2,70	2,81	
Отложено, г	73,78	79,54	
Отложено от принятого,%	66	70	

Таблица 3. - Использование кальция и фосфора

Показатель	Гру	Группа		
	1	1		
Поступило с кормом, г	35,85	33,34		
Выделено с калом, г	31,78	26,68		
Усвоено, г	4,07	6,66		
Выделено с мочой, г	0,03	0,03		
Отложено, г	4,04	6,62		
Отложено от принятого,%	11,3	20,0		
Отложено от переваренного, г	99	99		
Использование фосфора				
Поступило с кормом, г	18,57	18,97		
Выделено с калом, г	13,56	12,16		
Усвоено, г	5,01	6,81		
Выделено с мочой, г	0,04	0,05		
Отложено, г	4,97	6,77		
Отложено от принятого,%	26,8	35,7		
Отложено от переваренного, г	99	99		

По использованию фосфора установлена такая же тенденция. Однако поступление его с кормом было у опытных выше незначительно, а выделение с калом ниже в результате, при практически одинаковом выделении фосфора с мочой отложено было в организме на 36,2% больше.

Кровь является зеркалом процессов происходящих в организме животных, указывающих о влиянии скармливаемых кормов на интерьерные показатели (таблица 4).

Таблица 4. - Гематологические показатели

	Группа		
Показатель	I	H	
Гемоглобин, г/л	8,7±0,38	9,37±0,20	
Эритроциты, млн/мм	6,16±0,55	6,55±0,41	
Лейкоциты, тыс./мм	17,43±2,03	14,87±2,56	
Общий белок, г/л	64,97±0,16	67,83±2,21	
Кальций, ммоль/л	2,48±0,23	2,61±0,38	
Фосфор, ммоль/л	1,49±0,23	1,39±0,07	
Кислотная емкость по Неводову, мг%	380±11,5	353±6,7	
Каротин, мг%	0,47±0,02	0,41±0,02	
Витамин А, мкг%	1,42±0,06	1,54±0,05	
Магний, ммоль/л	0.78 ± 0.08	1,01±0,16	
Железо, ммоль/д	24,0±4,0	24,0±4,61	
Холестерин, ммоль/л	1,57±0,34	1,73±0,22	

Анализ показателей крови установил положительное влияние скармливания добавки на содержание гемоглобина которое, оказалось выше на 7,7% в пределах физиологической нормы

указывая на более интенсивные обменные процессы происходящие в организме опытных бычков. Установлены также повышение количества эритроцитов на 6,3%, и снижение на 14,7% лейкоцитов.

Научно-хозяйственный опыт проведен на молодняке крупного рогатого скота в возрасте 5 месяцев. В результате ежедекадных контрольных кормлений установлен среднесуточный рацион за опыт (таблица 5).

Таблица 5. - Среднесуточный рацион подопытного молодняка

		Группа			
Показатель	1		11		
	Κľ	%	КU	%	
Силос кукурузный	10,92	54,7	11,33	55,7	
Сенаж злаково-бобовый	1,51	7,9	1,49	7,6	
Комбикорм КР-2	1,50	34,3	1,50	33,7	
Зерно кукуруза + овес (50/50)	0,13	3,1	0,13	3,0	
Кормовые единицы	4,59		4,68		
Обменная энергия, МДж	52	,04	53,09		
Сухое вещество, г	486	4863,25		4965,92	
Сырой протеин, г	576	5,22	586	5,92	
Переваримый протеин, г	376	5,38	382	382,99	
Расщепляемый протеин, г	386	5,48	393,19		
Нерасщепляемый протеин, г	189	189,74		193,73	
Сырой жир, г	233	233,67		239,03	
Сырая клетчатка, г	1061,56		1089,25		
БЭВ, г	2711,87		2765,44		
Крахмал, г	723	723,72		726,83	
Сахара, г	230,61		235,3		
Кальций, г	32,27		32,83		
Фосфор, г	22,65		22,89		
Магний, г	9,58		9,76		
Сера, г	8,12		8,28		
Железо, мг	102	2,19	104	4,75	
Медь, мг	30	,63	30	,96	
Цинк, мг	177	7,04	179),13	
Марганец, мг	223	3,82	224	1,55	
Кобальт, мг	1,	63	1,	63	
Йод, мг	2,91		2,93		
каротин, мг	258,5		266,41		
Д, МЕ	6457,46		6475,26		
Е, мг	613,03		631,57		
Расщепляемость протеина,%	6	7	6	6	
Содержание переваримого протеина на 1 МДж ОЭ, г	7.	,2	7.	,2 ·	
Содержание переваримого протсина на 1 корм. ед., г	8	32	8	2	
Отношение кальция к фосфору	1,4	4:1	1,4	4:1	
КОЭ в 1 кг СВ	10),7	10),7	
Сахаропротеиновое отношение	0,0	6:1	0,0	5:1	

Рацион подопытных животных состоял из кукурузного силоса на 54,7% в контрольной и на 55,7% в опытной группах и комбикорма соответственно 34,3 и 33,7%, сенажа -7,9 и 7,6% и по 3% смеси зерна, состоящего в равных частях из кукурузы и овса. Питательность рационов составила в контрольной группе 4,59 корм. ед. и 4,68 корм. ед. в опытной.

На основании проведенных контрольных взвешиваний определена живая масса и рассчитана продуктивность подопытных быков (таблица 6).

Таблица 6. - Живая масса и продуктивность

	Группа		
Показатель	l	П	
Живая масса в начале опыта, кг	$124,7 \pm 3,05$	$122,2 \pm 3,34$	
Живая масса в конце опыта, кг	$177,4 \pm 4,04$	177,7 ± 2,74	
Валовый прирост, кг	$52,7 \pm 3,63$	$55,5 \pm 2,01$	
Среднесуточный прирост, г	$879 \pm 60,5$	$924 \pm 33,5$	
± к контролю, г	_	45	
± к контролю,%	_	+5,1	
Энергия прироста, МДж	10,8	11,6	
Конверсия энергии рациона в прирост живой массы,%	5,6	6.1	
Затраты обменной энергии а 1 МДж в приросте живой массы, МДж	4,7	4,5	
Затраты кормов на 1 кг прироста, корм. ед.	5,21	5,08	
± к контролю, корм. ед.	_	-0,13	
± к контролю,%		2,5	

Так, начальная живая масса при постановке на опыт составила 122.2-124,7 кг. В конце опыта живая масса быков составила в контрольной 177,4 и в опытной 177,7 кг. В результате валовой прирост составил к контроле 52,7, в опытной 55,5 кг. За 60 дней опыта среднесуточный прирост в опытной группе составил 924 г или на 5,1% выше контроля. Исследования показали, что по энергии прироста опытная группа оказалась выше контрольной на 7,4%, такая же тенденция сохранилась и по затратам обменной энергии на ІМДж в приросте только в меньшей степени — ниже на 4,3%. Затраты кормов также оказались ниже на 2,5% у молодняка, получавшего комбикорм содержащий биологически активную добавку «Кормомикс».

Конечным этапом оценки эффективности использования кормовой добавки при скармливании животным является определение экономической эффективности.

Исследованиями установлено, что стоимость суточного рациона оказалась больше у молодняка опытной группы, однако себестоимость прироста из-за большей продуктивности бычков снизилась на 3,3%.

Заключение

Использование в кормлении молодняка крупного рогатого скота комбикормов с включением 0,1% биологически активной добавки «Кормомикс» оказывает положительное влияние на переваримость питательных веществ кормов: повысилась переваримость сухого и органического веществ соответственно — на 4,8 и 4,0 п. п., БЭВ — на 3,3, жира — на 0,7, протеина — на 3,7; клетчатки на 6,8 процентных пунктов, что обеспечило повышение прироста живой массы на 5,1% при снижении затрат энергии на прирост — на 4,3%, кормов — на 2,5%, себестоимости полученной продукции — на 3,3%.

Литература

- 1. Яковчик, С. Г. Мировой опыт интенсификации молочного скотоводства и актуальность его использования в хозяйствах Беларуси : практическое пособие / С. Г. Яковчик, О. Ф. Ганущенко. Минск : Журнал «Белорусское сельское хозяйство», 2010. 44 с.
- 2. Ганущенко, О. Ф. Организация рационального кормления коров с использованием современных методов контроля полноценности их питания: рекомендации / О. Ф. Ганущенко, Д. Т. Соболев; Витебская государственная академия ветеринарной медицины. Витебск: ВГАВМ, 2016. 79 с.
- 3. Выращивание и болезни тропических животных : практическое пособие. Ч. 1 / А. И. Ятусевич [и др.] ; ред. А. И. Ятусевич ; Витебская государственная академия ветери-нарной медицины. Витебск : ВГАВМ, 2016. 524 с.
- 4. Повышение продуктивного действия комбикормов при производстве говядины / В. Ф. Радчиков, В. К. Гурин, С. Л. Шинкарева, О. Ф. Ганущенко, И. В. Сучкова // Сельское хозяйство проблемы и перспективы : сб. пауч. тр. Гродно : ГГАУ, 2016. Т. 35: Зоотехния. С. 144-151.
- 5. Рациональное использование кормовых ресурсов и профилактик нарушений обмена веществ у животных в стойловый период Славецкий В. Б., Ганушенко О. Ф., Пахомов И. Я., Разумовский П. П., Белко А. А., Макаревич Г. Ф.,

Демьянович Е. П., Хитринов Г. М. рекомендации / Учреждение образования «Витебская ордена «Знак Почета» государственная академия ветеринарной медицины». Витебск, 2002.

- 6. Пайтеров, С. Н., Богданович, Д. М. Эффективность использования дексаметазона при криоконсервировании эмбрионов крупного рогатого скота / С. Н. Пайтеров, Д. М. Богданович // В сборнике: Актуальные проблемы ветеринарии и интенсивного животноводства. Материалы национальной научно-практической конференции, посвященной 80-летию со дня рождения Заслуженного работника высшей школы РФ, Почетного профессора Брянской ГСХА, доктора ветеринарных наук, профессора А. А. Ткачева. 2018. С. 123–126.
- 7. Пайтеров С. Н., Богданович Д. М. Эффективность применения раствора мелоксикама в трансплантации эмбрионов крупного рогатого скота / С. П. пайтеров, Д. М. Богданович // В сборнике: Актуальные проблемы ветеринарии и интенсивного животноводства /Материалы национальной научно-практической конференции, посвященной 80-летию со дня рождения Заслуженного работника высшей школы РФ, Почетного профессора Брянской ГСХА, доктора ветеринарных наук, профессора А. А. Ткачева. 2018. С. 119–122.
- 8. Влияние минеральных добавок из местных источников сырья на эффективность выращивания молодияка крупного рогатого скота / Кот А. Н., Радчикова Г. Н., Сергучев С. И., Пентилюк С. И., Карелин В. В. // Ученые записки учреждения образования Витебская ордена Знак почета государственная академия ветеринарной медицины. 2010. Т. 46. № 1–2. С. 157–160.
- 9. Разумовский, Н. П., Богданович Д. М. Обмен веществ и продуктивность бычков при разном количестве нерасщепляемого протеина в рационе / Научное обеспечение жив-ва Сибири: мат-лы III Междунар. науч.-практич. конф.-Красноярск, 2019. С. 225–228.
- 10. Пайтеров С. Н., Богданович Д. М. Эффективность применения раствора мелоксикама в трансплантации эмбрионов крупного рогатого скота / С. Н. пайтеров, Д. М. Богданович // В сборнике: Актуальные проблемы ветеринарии и интенсивного животноводства /Материалы национальной научно-практической конференции, посвященной 80-летию со дня рождения Заслуженного работника высшей школы РФ, Почетного профессора Брянской ГСХА, доктора ветеринарных наук, профессора А. А. Ткачева. 2018. С. 119–122.
- 11. Экструдированный обогатитель местных источников сырья при кормлении телят / В. К. Гурин, В. Ф. Радчиков, О. Ф. Ганущенко, С. Л. Шинкарева // Актуальные проблемы интенсивного развития животноводства : сб. науч. тр. Горки, 2013. Вып. 16, ч. 1. С. 149–156.
- 12. Эффективность использования новых вариабельно-возрастных видов заменителей цельного молока при выращивании телят Ганущенко О. Ф., Боброва Л. С., Славецкий В. В. // Зоотехническая наука Беларуси. 2012. Т. 47. № 2. С. 31–40.
- 13. Ездаков Н. В. Перспективы применения в животноводстве ферментов, разрушающих целлюлозу, гемицеллюлозу и другие полисахариды// Ферментативное расщепление целлюлозы. М.: Наука, 1967. С. 51–59. (36)
- 14. Богданович, Д. М., Разумовский Н. П. Физиологическое состояние и продуктивность бычков в зависимости от количества протеина в рационе / Социально-экономические и экологические аспекты развития Прикаспийского региона: межд. научно-практическая конференц., 28–30 мая 2019 г. Элистра: Изд-во Калм. ун-та, 2019. С. 197–202.

УДК 637.18:636.2.084.41

Поступила в редакцию 30.08.2019 Received 30.08.2019

В. И. Передня¹, Ю. А. Цой², Е. Л. Жилич¹, А. А. Кувшинов¹, А. А. Романович³

¹РУП «НПЦ НАН Беларуси по механизации сельского хозяйства»,
г. Минск, Республика Бедарусь,
e-mail: belagromech.by
²ФГБНУ «Федеральный паучный агроинженерный центр ВИМ»,
г. Москва, Российская Федерация,
e-mail: vim@vim.ru
³УО «Белорусский государственный аграрный технический университет»,
г. Минск, Республика Бедарусь,
e-mail: rektorat@bsatu.by

ПРИОРИТЕТНЫЕ НАПРАВЛЕНИЯ АГРОИНЖЕНЕРНЫХ РАЗРАБОТОК ДЛЯ МОЛОЧНОГО СКОТОВОДСТВА

В статье изложены существующие недостатки на молочно-товарных фермах России и Белоруссии и показано, что производимое молоко на существующих фермах в большинстве хозяйств является неконкурентоспособным.