- 5. Цой, А.А. Эффективность использования биоконсерванта Сил-опл при заготовке высококачественного силоса: дис. канд. с.-х. наук: 06.02.02 /Цой Александр Анатольевич. Великий Новгород, 2008.–127 с.
- 6. Архив погоды [Электронный ресурс]. Режим доступа: http://rp5.ru, свободный. Загл. с экрана. [рус. яз.].

Abstract

The natural and climatic influences on the efficiency of the in-field drycuring of mowed-off grasses and means to intensify the moisture elimination are treated in the work. Technical solutions to improve the existing foddering machinery and increase the fodder quality are offered.

УДК 629.114.2

ВЛИЯНИЕ РАБОТЫ СЕЛЬСКОХОЗЯЙСТВЕННЫХ МАШИН НА НАВЕСНЫЕ И ПОЛУНАВЕСНЫЕ АГРЕГАТЫ

В.Г. Кушнир, д.т.н., профессор, Н.В. Щербаков, к.т.н., доцент, А.А. Галямова

Костанайский государственный университет имени А. Байтурынова, г. Костанай, Казахстан

Решена задача нахождения аналитических зависимостей для определения силового воздействия навесного орудия на трактор.

Тяговая характеристика трактора при агрегатировании навесных и полунавесных машин существенно отличается от работы с прицепными орудиями. Вес навесных и полунавесных машин и реакция почвы на рабочие органы частично или полностью передаются на трактор. При тяговом усилии 30-50 кН у агрегата с трактором и навесным культиватором-плоскорезом-глубокорыхлителем увеличение сцепного веса на различных технологических операциях составляет 210-830 кг [1].

При разработке широкозахватного культиватора-плоскореза необходимо также учитывать влияние части веса орудия на сцепной вес трактора. С этой целью в математическую модель функционирования почвообрабатывающего орудия, используемую для обоснования основных параметров плоскореза, вводится буксование трактора с учетом изменения его сцепного веса.

Определение догрузки трактора с помощью специальных тензометрических устройств довольно сложно и требует наличия необходимого оборудования. Эту работу можно значительно упростить, если иметь аналитические зависимости для определения силового воздействия плоскореза на трактор.

Найдем догрузку к трактору от культиватора-плоскореза. Орудие пятисекционное, с расстановкой рабочих органов в виде клина. На рисунке 1 представлены схемы сил, приложены к шарнирно сочлененному культиватору. Рассмотрим равновесие отдельных частей машины под воздействием пространственной системы сил (рисунок 1).

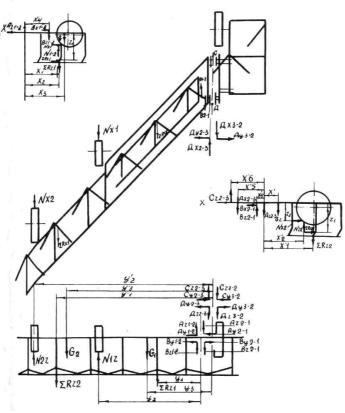


Рисунок 1 - Схема сил, приложенных к боковой и внутренней секциям широкозахватного культиватора-плоскореза.

Горизонтальная $\sum R_{xj}$ и вертикальная $\sum R_{zj}$ составляющие суммарного сопротивления рассматриваются как силы, приложенные к центру сопротивления рабочих органов секции. Из-за малого значения R_y в расчетах не учитывается. Реакция почвы на рабочих органах секции R_{xj} определяется следующим соотношением:

$$\sum R_{xi} = kabn,$$
 (1)

где k - коэффициент удельного сопротивления почвы, МПа (для зоны Северного Казахстана и Западной Сибири k = 0,03-0,05 МПа) [1];

а – глубина обработки, м;

b – ширина захвата, м (b= 0,9 м);

n - количество рабочих органов, шт.

Согласно [2], в зависимости от влажности и твердости почвы R_z/R_x =0,2-1. В наших опытах R_z = 0,3 R_x .

Связь между горизонтальной и вертикальной составляющими сопротивления колес выражается зависимостью

$$N_x = \mu N_x$$
,

где и - коэффициент перекатывания (0,2).

Отсоединим внутреннюю секцию и составим условие ее равновесия в продольно-вертикальной плоскости. При этом шарнир А примем цилиндрическим, а шарнир В цилиндрическим с подпятником. Условия равновесия рассмотрим в продольно-вертикальной плоскости (рисунок 2). Начало координат находится в точке К (статический центр тяжести трактора)

$$\begin{array}{cccc} \sum X = 0 & -S_x + P_x - 2N_{x3} - \sum R_{x3} - 2D_{x3-2} = 0; \\ \sum Z = 0 & S_z + 2N_{z3} - 2C_{z3-2} - P_z - G_3 - \sum R_{z3} + 2D_{z3-2} = 0; \\ \sum M_{yk} = 0 & S_x \ z_7 + P_2 \ x_6" + P_x z_4 - S_z x_6" - 2N_{z3} \ x_2" + G_3 x_3 + 2C_{z3-2} x_4" + \\ + \sum R_{z3} \ x_1 - 2N_{x3} z_5 - \sum R_{x3} \ z_6 - 2D_{z3-2} x_5" - 2D_{x3-2} z_3 = 0. \end{array}$$

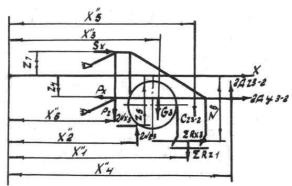


Рисунок 2 - Схема сил, приложенных к центральной секции культиватораплоскореза и навеске трактора.

При этом учитываем, что

$$P_z = P_x \ tg \ \alpha; \quad S_z = S_x \ tg\beta; \quad N_{x3} = \mu N_{x3}$$

где α и β – углы наклона нижних и верхних тяг навесного устройства трактора.

$$\alpha = \alpha_0 - k_i a; \quad \beta = \beta_0 - k_j a$$
 (2)

где α_0 и β_0 – начальные углы наклона нижних и верхних тяг, рад;

 k_i и k_j – коэффициенты пропорциональности между глубиной обработки и углом наклона тяг;

а – глубина обработки, м.

Эти значения определяются из параметров навески трактора и орудия.

В нашем случае, выразив углы в радианах, получим

$$\alpha = 9.07 - 0.87a$$
,
 $\beta = 0.26 - 0.87a$

Для центральной секции размеры по координате z относительно точки K зависят от глубины обработки:

$$z_i = z_0 + \alpha$$

Определяем силу, действующую со стороны орудия на трактор (T_z) :

$$T_z = S_z - P_z$$

В работах [3,4] это значение выражается через постоянную величину (вес орудия) и обозначается Р"

$$P'' = T_z/G$$
,

где G – вес орудия.

При расчетах глубина обработки изменялась через интервал 2 см. Из зависимостей (1) и (2) найдены силы, действующие на рабочие органы культиватора и углы наклона верхней и нижних тяг трактора. Остальные исходные данные приведены в таблице 1.

Таблица 1. Координаты точек приложенных сил (x, y, z) и вес секций культиватора (G_i) . Н

	1 (1)7									
\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_1	\mathbf{x}_{2}	X ₃	\mathbf{x}_4	X ₅	\mathbf{x}_{1}	
0.85	1.15	1.10	1.15	1.55	1.42	3.27	0.23	0.88	4.24	
x ₂ "	X ₄	X ₅	x ₆	\mathbf{y}_1	\mathbf{y}_2	\mathbf{y}_3	y_1	y_2	y ₃	
3.49	4.29	5,54	2,74	1,35	2,96	1,40	4,32	5,05	3,27	
z_1	\mathbf{z}_2	Z 3	Z4	Z ₅	Z ₆	Z 7	G_1	G_2	G_3	
0,20	0,55	0,44	0,64+a	1,2	1,2+a	0,56-a	3800	7700	9700	

На графике (рисунок 3) кривые ограничены глубиной обработки, предусмотренной агротребованиями на культиватор-плоскорез. Анализ полученных зависимостей показывает, что влияние орудия на трактор Р" зависит как от глубины обработки, так и от состояния почвы. Перегиб кривых происходит от значения углов наклона верхней и нижней тяг навесного устройства трактора. Для данной схемы орудий значение коэффициента при различных почвенных условиях находится в пределах 0,03-0,28.

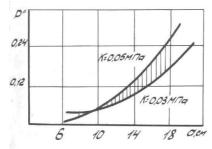


Рисунок 3 - Значение коэффициента Р", показывающего, какое влияние оказывает орудие на трактор.

Увеличение догрузки трактора в определенных пределах приводит к повышению его сцепного веса и к улучшению тяговых свойств. Поэтому для регулировки воздействия широкозахватного орудия на трактор и наоборот целесообразно предусмотреть возможность изменения угла наклона верхней тяги навесного устройства путем присоединения ее в разных точках.

Заключение

Таким образом, с помощью уравнений, применяемых для силового анализа орудий, можно определить догрузку машины на трактор в зависимости от глубины обработки или углов наклона верхней и нижней тяг навесного устройства трактора. Полученные значения коэффициента Р" используются при определении сцепного веса. Это позволяет более точно определить основные параметры агрегата: ширину захвата, скорость движения и производительность. Результаты работы могут быть использованы при разработке широкозахватных орудий, а также для оценки навесного устройства трактора.

Литература

- 1. Иорданский Р.Б.Исследование параметров широкозахватного плоскореза-глубокорыхлителя. Тр. ЧИМЭСХ, Челябинск, 1982, с. 42-49.
- 2. Тростянский С.А. Исследование параметров широкозахватных культиваторов-плоскорезов. Тракторы и сельхозмашины, 1978, №12, с. 21-31.
- 3. Веденяпин Г.В., Киртбая Ю.К., Сергеев М.П. Эксплуатация машинотракторного парка. М.: Из-во сельскохозяйственной литературы, журналов и плакатов, 1963, с. 39-41.
- 4. Чудаков Д.А. Основы теории трактора и автомобиля. М.: Машиностроение, 1962,с. 49-63.

Abstract

The problem of finding analytical dependences for definition power influence of the hinged tool on a tractor solved.