- 5. Гвоздев, А.В. Разработка внутрикамерного процесса и обоснование параметров устройства для внесения жидких консервантов при формировании растительной массы в рулоны: дис. ...канд. техн. наук: 05.20.01 / А.В. Гвоздев. Глеваха, 1990. С. 92.
- 6. Старцев, С.В. Анализ способов оценки равномерности внесения консерванта в корм / С.В. Старцев // Задачи молодых ученых по научному обеспечению животноводства и кормопроизводства в Поволжье: сб. молодых ученых / Поволжский НИИЖК. Саратов, 1991. Вып. 65. С. 21—26.
- 7. Грачев, А.В. Способы и технические средства повышения эффективности обработки силосуемой массы химическими консервантами: дис.канд. техн. наук: 05.20.01 / А.В. Грачев. М., 1987. 167 л.
- 8. Ясинскас, А.А. Совершенствование технологии и средств механизации химического консервирования трав: дис. канд. техн. наук: 05.20.01 / А.А. Ясинскас. Елгава, 1988. С. 87–91.

Abstract

The analysis of efficiency of application methods of an assessment of sharing uniformity of liquid preservatives in a fodder material is shown in this article.

УДК 629.113.001 ИССЛЕДОВАНИЕ КАЧЕСТВА ДИЗЕЛЬНЫХ ТОПЛИВ

В.Г. Кушнир, д.т.н., профессор, Н.В. Гаврилов, к.т.н., доцент; Н.К. Молдабек

Костанайский государственный университет имени А.Байтурсынова, г. Костанай, Казахстан

Результаты исследований проб дизельных топлив, взятых с различных заправок области показали, что они соответствуют ГОСТ. Исследования, проведенные при помощи установки ТВЗТ, выявили ряд недостатков ее конструкции: сложность отслеживания и регулирования температурного режима; проблема с фиксацией температуры дизельного топлива; установка не очень компактна. Для дальнейшей работы в этой области необходимо разработать конструктивную схему прибора.

Нефтепродукты или специальные жидкости, которые не отвечают требованиям стандартов, должны подлежать замене или ремонту (отстой, фильтрация и др.), если это возможно.

Для контроля качества нефтепродуктов и специальных жидкостей, используемых при эксплуатации тракторов, автомобилей и других машин, промышленность выпускает специальные лаборатории:

Кроме лабораторий заводов-изготовителей на территории Казахстана действуют порядка 30 аккредитованных лабораторий, занимающихся испытанием нефтепродуктов. Однако не все могут похвастаться наличием в активе современной и мощной приборной базой.

Испытательное оборудование лабораторий АО «ҚазМұнайГаз Өнімдері» позволяет проводить контроль качества автомобильных бензинов, дизельного топлива на уровне требований стандартов ЕВРО-2, ЕВРО-3, ЕВРО-4.

В настоящее время в Костанайской области наиболее распространены лаборатории «РЛ» и «ПЛ-М», так как они в основном шли на комплектацию нефтебаз и нефтескладов бывших колхозов, совхозов, крупных автотранспортных предприятий и др.

Важнейший фактор, от которого зависят технико-экономические показатели двигателя,— это качество применяемого топлива. Поэтому топливо должно обладать определенными эксплуатационными свойствами, которые регламентируются численными значениями его физико-химических показателей, фиксируемых в соответствующих ГОСТ [1].

Исследования проводились в условиях лаборатории топливо-смазочных материалов на инженерно-техническом факультете, КГУ имени А. Байтурсынова. Студенты факультета занимались отбором проб с заправок области: - АЗС Наримановская; - АЗС Бахыт; - АЗС Иволга; - АЗС Эталон.

Проведенные исследования с помощью специального лабораторного оборудования, сравнивались с ГОСТ Р 52368-2005 (ЕН 590:2004) для дизельных топлив.

Загрязнения проб определены методом отстаивания, фильтрации, с использованием индикаторов. Пробы, взятые из раздаточных стояков, имеют влажность до 6 % и зольность вследствие отстаивания продуктов коррозии и частично продуктов атмосферной пыли.

В то же время в отстое находятся загрязнения размером до 200...250 мкм. В отстое видны следы воды, а также присутствуют частицы продолговатой формы, происхождение которых, по всей видимости, связано с прокладочно-уплотнительными материалами и растительными веществами.

В лабораторной практике для измерения плотности дизельных топлив используется ареометрический метод, применяемый нами ранее при замерах плотности бензинов. Измеренное значение плотности приводится по стандартному значению при температуре 20° C[2,3]:

Исследования проводились в соответствии с ГОСТ 33 - ГОСТ Р 53708 - ASTM D 446 - ISO 3104 - ISO 3105 (таблица 1).

Вязкость дизельных топлив определяли при 20°C по ГОСТ 305-82.

Опыт повторяли три раза, расхождение между отсчетами не должно превышать 0,4 с. Из трех отсчетов вывели среднее арифметическое значение и перевели его в секунды. Каждый вискозиметр имеет паспорт, в котором указан

номер вискозиметра, диаметр капилляра и постоянная вискозиметра c, по которой подсчитывают кинематическую вязкость при 20° C, cCт.

Таблица 1 Результаты исследований наличия примесей и плотности дизельных топлив

Показатели	ГОСТ	ГОСТ	A3C	АЗС ЭТАЛОН	A3C	A3C
	ДЛ	ДЗ	ИВОЛ-		Нари-	БАХЫТ
	летнее	зимнее	ГΑ		мано-	
					вская	
Наличие	Отсут	Отсут	Отсут	Загрязнения	Отсут	Загрязнения
механических	ствует	ствует	ствует	размером до	ствует	размером до
примесей,				200250 мкм.		200250 мкм.
смол и воды				Следы воды		Следы воды
Плотность,	He	He				
Γ/cm^3	более	более	0,824	0,834	0,815	0,829
	0,860	0,840				

Технические данные прибора (вискозиметр Пинкевича):

- № прибора 846;
- показатель постоянной вискозиметра $c = 0.01086 \text{ мм}^2/c^2$;
- диаметр капилляра -0.062 мм.

Результаты проведенных исследований в таблице 2.

Таблица 2 Результаты проведенных исследований кинематической вязкости лизельных топлив

Показатели	ГОСТ	ГОСТ	A3C	A3C	АЗС Нари-	A3C
	ДЛ летнее	ДЗ зимнее	ИВОЛГА	ЭТАЛОН	мано-	БАХЫТ
					вская	
Кинематиче-						
ская вязкость,	3,0-6,0	1,8 - 5,0				
сСт						
			4,105	4,829	3,496	3,749
Среднее время	не менее	не менее				
истечения, с	200 и не	200 и не				
	более	более				
	600	600	378	445	321,94	345,45

Температура вспышки - минимальная температура, при которой пары топлива с воздухом образуют горючую смесь, вспыхивающую при поднесении источника огня [5,6].

Для выполнения исследований применили следующую аппаратуру и реактивы: - прибор для определения температуры вспышки нефтепродуктов, соответствующий требованиям ГОСТ 305-82; - испытуемый образец $80~{\rm cm}^3$; - испытуемый образец дизельного топлива

Результаты проведения работы отражены в таблице 3 и сопоставлены с требованиями ГОСТ на испытуемый нефтепродукт по данному показателю качества.

Таблица 3	Результаты проведенных исследований температуры вспышки ди-
зельных топли	В

Показатель	ГОСТ	ГОСТ	A3C	A3C	A3C	A3C
	ДЛ летнее	ДЗ зимнее	ИВОЛ-	ЭТА-	Наримано	БАХЫ
			ГΑ	ЛОН	вская	T
Температура	Не ниже	Не ниже	66,3	69,7	60	79,5
вспышки в	40, не выше	35, не				
закрытом	70	выше 60				
тигле, град						

Для выявления вида используемого дизельного топлива (летнее, зимнее, арктическое) используют метод определения температуры помутнения дизельного топлива.

Для зоны северного Казахстана применение дизельных топлив соответствует в основном зимним и летним маркам (ДЛ, ДЗ).

Сущность метода определения температуры помутнения заключается в охлаждении пробы топлива, помещенной в охлаждающую смесь в пробирке с двойными стенками и термометром, и определении температуры, при которой в топливе наблюдается появление мути и первых кристаллов по ГОСТ 6053.

Результаты исследований в таблице 4.

Таблица 4 Результаты проведенных исследований температуры помутнения лизельных топлив

Показатель	ГОСТ	ГОСТ	A3C	A3C	A3C	A3C
	ДЛ лет-	ДЗ зим-	ИВОЛ-	ЭТА-	Наримано-	БАХЫТ
	нее	нее	ГА	ЛОН	вская	
Температура	Не вы-	Не вы-				
помутнения,	ше -5	ше -25	-29	-30	-32	-23
град						

Заключение

1. По полученным исследованиям для дизельных топлив, взятых с АЗС ЭТАЛОН, АЗС БАХЫТ видно, что большое количество примесей (механических, коррозионных, водяных) находится в отстое, что соответственно повлияет со временем на качество дизельного топлива (загрязнения размером до 200...250 мкм, следы воды) и в целом на срок эксплуатации двигателя.

- 2. Есть необходимость осуществления мер по очистке резервуаров от механических примесей и воды, создание устройств, позволяющих механизировать, то есть ускорять процесс очистки емкостей для хранения дизельных топлив.
- 3. Для окончательного определения качества применяемых дизельных топлив необходимо иметь лабораторное оборудование, позволяющее определить фракционный состав, цетановое число и другие качественные показатели. Это может быть оборудование, созданное на базе полевой лаборатории ПЛ-2М.
- 4. Результаты исследований проб дизельных топлив, взятых с АЗС ЭТАЛОН, АЗС ИВОЛГА, АЗС Наримановская показали, что они практически соответствуют ГОСТ по всем проверенным показателям и подходят к маркам ДЛ (топливо летнее).
- 5. Для проб дизельного топлива, взятым с A3C БАХЫТ необходимы дополнительные исследования, включая операции компаундирования (смешивания), отстаивания, фильтрации.
- 6. Исследования, проведенные при помощи установки определения температуры вспышки дизельного топлива в закрытом тигле, выявили ряд недостатков ее конструкции:
- сложность отслеживания и регулирования температурного режима;
- проблема с фиксацией температуры вспышки дизельного топлива;
- сложность управления процессом перемешивания пробы:
- неудобство поджига пробы.
- 7. Для дальнейшей работы в этой области начата разработка конструктивной схемы прибора для определения температуры вспышки дизельного топлива в закрытом тигле.

Литература

- 1 Итинская Н.И., Кузнецов Н.А. Справочник по топливу, маслам и техническим жидкостям. М. Колос. 1982 г. 210 с.
 - 2 Лышко Г.П. Топливо и смазочные материалы. М. Агропромиздат. 1985
- 3 Кузнецов А. В. Кульчев М.А. Практикум по топливу и смазочным материалам. М. Агропромиздат. 1987 г.- 223 с
- 4 Григорьев М.А. и др. Качество нефтепродуктов и надежность двигателей. М. Издательство стандартов. 1981 г.- 170 с.
- 5 Никифоров А.Н. Топлива и смазочные материалы: потребление и экономия. М. Россельхозиздат. 1981 г.- 180 с.
- 6 Уразгалеев Т.К. Обеспечение качества нефтепродуктов на нефтебазах и нефтескладах. Учебное пособие. Уральск. ОАО «ИПК Дастана». 2003 г 250 с.
- 7 Иванов В.И. Опыт технического обслуживания и ремонта нефтескладского оборудования. Пенза. 1993 г 188 с.

Abstract

Test results of diesel fuels samples taken from various region filling stations show that they comply with GOST. Study conducted by means unit, revealed several defects of its structure: complexity of temperature tracking and control; problem with temperature of diesel fuel fixing; not space effective. For further work in this field it is required to develop structural design of instrumentation.

УДК 631.312.35

СНИЖЕНИЕ ЭНЕРГЕТИЧЕСКИХ ЗАТРАТ НА ПАХОТУ

О.И. Мисуно, к.т.н., доцент, С.А. Легенький, инженер, А.И. Оскирко, инженер

УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

В статье рассматриваются вопросы снижения энергетических затрат при работе пахотных агрегатов в составе тракторов «Беларус». Решение представляется в применении плугов с комбинированными рабочими органами, у которых по сравнению с лемешно-отвальными плугами, меньшее тяговое сопротивление и лучшее качество обработки почвы.

Введение

Повышение урожайности сельскохозяйственных культур и плодородия почвы тесно связаны с качеством пахоты, являющейся самым энергоемким процессом в полеводстве. На ее выполнение затрачивается примерно 30–40% от всех энергозатрат на полевые работы. В этой связи особую значимость приобретает развитие энергосберегающих технологий почвообработки.

Основная часть

Задача снижения энергоемкости пахоты решается наращиванием единичной мощности тракторов, используемых с более широкозахватными и скоростными агрегатами, а также созданием новых и усовершенствованием существующих почвообрабатывающих орудий и технологий.

Поэтому на протяжении многих лет повышение производительности агрегатов на основной обработке почвы достигалось увеличением скорости движения. Увеличение ширины захвата привело к возрастанию, как массы сельскохозяйственных орудий, так и тракторов, а также к ухудшению маневренности агрегатов. Такой результат объясняется интенсивным ростом тягового сопротивления плугов при увеличении скорости движения и недостаточной сцепной массой энергонасыщенных тракторов.