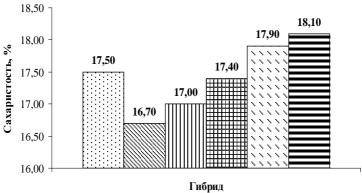
Секция 2: Перспективные технологии производства, хранения и переработки продукции растениеводства

- 3. Киселева, А. В. Биологически активные вещества лекарственных растений Южной Сибири [Текст] / А.В. Киселева, Т.А. Волхонская, В.Е. Киселев. Новосибирск: Наука. Сиб. Отд-ние, 1991.
- 3. Панин Л.Е. Биохимические механизмы стресса. Новосибирск: Наука, 1983.
- 4. Велинский, Н. Н. Роль окислительно-восстановительного состояния никотинамидных коферментов в регуляции клеточного метаболизма [Текст] / Н. Н. Велинский, П. К. Пархомец // Витамины. 1976. Вып. 9. С. 3-15.
- 5. Викуль С.И. Технология ультрафильтрации плодово-ягодных соков, обогащенных биополимерами: Дис...канд. техн. наук. Одесса, 1995.

УДК 633.413(470.57)

СОДЕРЖАНИЕ ОЧИЩЕННОГО САХАРА ГИБРИДОВ САХАРНОЙ СВЕКЛЫ В УСЛОВИЯХ РЕСПУБЛИКИ БАШКОРТОСТАН

Исламгулов Д.Р., к.с-х.н, доцент, Алимгафаров Р.Р., к.с-х.н, ассистент ФГБОУ ВПО Башкирский ГАУ, г. Уфа, Российская Федерация


Введение

Сахарная свекла является единственным источником сырья для производства сахара в России и Республике Башкортостан. В корнеплодах современных сортов и гибридов сахарной свеклы содержится 16-20 сахара. При промышленной переработке из 1 ц корнеплодов сахарной свеклы получают 12-15 кг сахара, 85 кг жома и 4-6 кг патоки. Повышение сахаристости корнеплодов сахарной свеклы обусловлено, в первую очередь, внедрением в производство новых сортов и гибридов с более высокими технологическими качествами. Для более полной характеристики технологических качеств корнеплодов, кроме сахарозы, необходимо учитывать содержание несахаров, в особенности растворимой их части.

Основная часть

В настоящее время сахарные заводы Республики Башкортостан, как и в целом страны, при приемке свеклы учитывают из технологических показателей только содержание сахара, в соответствии с чем, и рассчитываются с товаропроизводителями. Было бы целесообразным проводить оплату за принятую заводами корнеплодов свеклы не только по сахаристости, но и с учетом содержания Na, K и α -аминного азота, как это принято во всем мире. Мы думаем, что это только вопрос времени, и чтобы способствовать заинтересованности свекловодов в повышении качества корнеплодов, эту систему оплаты примут и у нас в стране.

Особенности формирования и приемы повышения сахаристости, как одного из основных технологических показателей качества корнеплодов сахарной свеклы, изучено детально отечественными (Бузанов И.Ф., 1968; Зубенко В.Ф., 1989; Чернявская Л.И., 1991; Горбунов Н.Н., Малыгин Е.В., 1993; Гаджиев А.Ю., 1993; Хелемский М.З., 1995; Вострухина Н.П., 1999; Ионицой Ю.С., 2006) и зарубежными (Вигbа М., 1984; Вürcky К., 1991; Glattkowski Н., 1993; Märländer В., 1994; Hoffman С., 2002) учеными. В то же время практически отсутствует научная информация о зависимости содержания мелассообразующих веществ и их влиянии на выход очищенного сахара, особенно у новых гибридов сахарной свеклы.

□ РМС-70 (контроль) В XM-1820 □ Доминика ⊞ Геракл □ Кристелла □ Ахат Рисунок — Сахаристость корнеплодов сахарной свеклы в период уборки (2007-2009 гг.)

Полевые опыты проводились в 2007-2009 гг. ОАО "Надежда" Кармаскалинского района. Объектами исследований были гибрид сахарной свеклы российской селекции – РМС-70 (N –урожайно-сахаристый тип) (контроль); три гибрида селекции фирмы Сингента (Швейцария) – Геракл (N – нормальный тип), ХМ-1820 (Е – урожайный тип); два гибрида селекции фирмы КВС ЗААТ АГ (Германия) – Кристелла (NZ – нормальносахаристый тип), Доминика (NE – нормально-урожайный тип); один гибрид селекции фирмы Штрубе-Дикманн (Германия) – Ахат (Z – сахаристый тип). Метеорологические условия 2007–2009 гг. отражали особенности климата южной лесостепи Республики Башкортостан с его неустойчивым увлажнением в период вегетации и резким колебанием температуры воздуха. Густота стояния растений составляла 85-90 тыс. растений на гектар. Анализы на содержание мелассообразующих веществ проводились в исследовательской лаборатории в г. Кляйнванцлебен (фирма KWS SAAT

Секция 2: Перспективные технологии производства, хранения и переработки продукции растениеводства

АG, Германия). Для определения альфа-аминного азота используется спектрофотометр. Содержание калия и натрия определяется на пламенном фотометре.

Сахарная свекла способна образовать за вегетационный период 200 ц/га и больше сухой массы, и около 50% ее накапливается в форме сахара в корнеплодах, процесс которого идет непрерывно. Она является одним из основных технологических показателей корнеплодов сахарной свеклы [1]. Под сахаристостью подразумевается содержание сахара в корнеплодах, выраженное в процентах.

Таблица 1 — Содержание калия, натрия и альфа- аминоазота в корнеплодах сахарной свеклы в период уборки, ммоль на 100 г сырой массы (2007-2009 гг.)

•	2007-2009 гг.		2007-2009 гг.		2007-2009 гг.		
Гибрид	калий	разница (+/–)	натрий	разница (+/–)	альфа- аминоазот	разница (+/–)	
РМС-70 кон- троль	4,86	0	0,85	0	2,23	0	
XM-1820	4,92	0,06	0.90	0,05	1,91	-0,32	
Доминика	4,85	-0,01	0,84	-0,01	1,87	-0,36	
Геракл	4,64	-0,22	0,74	-0,11	1,80	-0,43	
Кристелла	4,23	-0,63	0,52	-0,33	1,63	-0,60	
Ахат	4,11	-0,75	0,45	-0,40	1,55	-0,68	

В среднем за три года испытания наибольшую сахаристость показал гибрид Ахат – 18,10%, наименьшую – гибрид XM-1820 -16,70% (рисунок). У остальных гибридов была сравнительно одинаковая сахаристость, которая варьировала от 17,00 до 17,90%. Гибриды сахаристых направлений (Ахат, Кристелла) показали высокую сахаристость, чем гибриды урожайного и нормального типов (XM-1820, Доминика, Геракл). Сахаристость контрольного гибрида РМС-70 была выше, чем у зарубежных гибридов аналогичных типов.

Технологические качества корнеплодов сахарной свеклы определяются количеством сахара, переходящим в мелассу. Одним из основных показателей технологических качеств является содержание калия в корнеплодах. Чем больше его содержание, тем больше сахара переходит и теряется в мелассе [2]. Калий задерживает 70-80% сахара, переходящего в мелассу.

Натрий, как и калий, относится к одному из основных мелассообразователей, присутствие которого отрицательно влияет на экстракцию кристаллизированного сахара [5].

Среди азотных соединений корнеплода сахарной свеклы, альфааминоазот или «вредный азот» играет наибольшую отрицательную роль при извлечении сахара из корнеплода [6]. Чем больше содержание альфааминоазота в корнеплодах, тем меньше выход сахара.

Содержание калия варьировало как по годам, так и между гибридами (таблица 1). Наибольшее содержания калия было у гибрида XM-1820 — 4,92%, наименьшее у гибрида Ахат — 4,11%. Гибриды РМС-70 и Доминика существенно не отличались между собой и имели, соответственно, 4,86 и 4,85 ммоль. В то же время гибриды сахаристого и нормально-сахаристого типов отличались существенно низким его содержанием.

Результаты трехлетних опытов показали, что наибольшее содержание в корнеплодах натрия во все годы исследований было у гибрида XM-1820 (0,90 ммоль), наименьшее значение было у гибрида Ахат — 0,45 ммоль (таблица 1). Гибриды РМС-70 и Доминика незначительно отличались между собой и по содержанию натрия, 0,85 и 0,84 ммоль, соответственно.

В среднем за три года исследований наибольшее содержание альфа – амино-азота, имел стандартный гибрид РМС-70 (2,23 ммоль), наименьшее – гибрид Ахат (1,55 ммоль) (таблица 1). Гибриды ХМ-1820, Доминика и Геракл также отличались высоким содержанием альфа-аминоазота соответственно 1,91, 1,87 и 1,80 ммоль. У гибрида Кристелла были низкие по-казатели, как и у гибрида РМС-70. Таким образом, гибриды сахарной свеклы различных селекционных направлений отличаются между собой по содержанию калия, натрия и альфа – амино-азота в корнеплодах. Урожайные, нормально-урожайные и нормальные (совмещенные) типы гибридов отличались высокими содержаниями несахаров в корнеплодах. В то же время гибриды сахаристых и нормально-сахаристых типов имели низкое их содержание. На содержание сахара в мелассе в немалой степени сказываются как технологические качества сахарной свеклы, так и состояние сахарного завода [3].

Стандартные потери сахара при образовании мелассы вычислялись по Брауншвейгской формуле (1) и выражались в процентах.

$$C\Pi C = 0.12*(K+Na) + 0.24*\alpha - аминоазот + 0.48,$$
 (1) где СПС – стандартные потери сахара, %; К – содержание калия, ммоль на 100 грамм сырой массы; Na – содержание натрия, ммоль на 100 грамм сырой массы; α -аминоазот – содержание альфа-аминоазота, ммоль на 100 грамм сырой массы.

Результаты трехлетних исследований показали, что разница между вариантами была существенной (таблица 2). Значения стандартных потерь сахара при образовании мелассы варьировали от 1,40 до 1,70%. Стандартные потери сахара при образовании мелассы у гибридов урожайного и

Секция 2: Перспективные технологии производства, хранения и переработки продукции растениеводства

нормально-урожайного типов были сравнительно выше, чем у сахаристого и нормально сахаристого гибридов, что было связано с высоким содержанием мелассообразующих веществ (калия, натрия и альфа-аминоазота).

Таблица 2 — Стандартные потери сахара (СПС) при образовании мелассы, % (2007-2009 гг.)

Гибрид	2007 г.		2008 г.		2009 г.		2007-2009 гг.	
	СПС	разни- ца (+/-)	СПС	разни- ца (+/-)	СПС	разни- ца (+/-)	СПС	разни- ца (+/-)
РМС-70 (конт- роль)	1,68	0	1,79	0	1,62	0	1,70	0
XM- 1820	1,65	-0,03	1,68	-0,11	1,57	-0,05	1,64	-0,06
Доми- ника	1,64	-0,04	1,65	-0,14	1,53	-0,09	1,61	-0,09
Геракл	1,60	-0,08	1,56	-0,23	1,51	-0,11	1,56	-0,14
Кри- стелла	1,43	-0,25	1,47	-0,32	1,41	-0,21	1,44	-0,26
Ахат	1,39	-0,29	1,44	-0,35	1,36	-0,26	1,40	-0,30

Таблица 3 — Содержание очищенного сахара (СОС) в корнеплодах сахарной свеклы, % (2007-2009 гг.)

Гибрид	2007 г.		2008 г.		2009 г.		2007-2009 гг.	
	COC	разни- ца (+/–)	COC	разни- ца (+/-)	COC	разни- ца (+/–)	COC	разни- ца (+/–)
РМС-70 (контроль)	15,62	0	16,71	0	14,88	0	15,80	0
XM-1820	14,75	-0,87	15,72	-0,99	14,63	-0,25	15,06	-0,74
Доминика	15,46	-0,16	16,35	-0,36	14,27	-0,61	15,39	-0,41
Геракл	16,20	0,58	16,64	-0,07	14,69	-0,19	15,84	0,04
Кристелла	16,47	0,85	17,43	0,72	15,39	0,51	16,46	0,66
Ахат	16,31	0,69	17,76	1,05	16,04	1,16	16,70	0,90

Содержание очищенного сахара (2) (СОС) вычисляется как разница между сахаристостью и стандартными потерями сахара в мелассе [4].

$$COC = C - C\Pi C, \qquad (2)$$

где OCC – содержание очищенного сахара, %; C – сахаристость, %; $C\Pi C$ – стандартные потери сахара в мелассе, %.

Изученные гибриды отличались по содержанию очищенного сахара (таблица 3). Содержание очищенного сахара у гибридов урожайного и нормально-урожайного направлений было меньше, чем у гибридов сахаристого и нормально-сахаристого.

Таким образом, содержание очищенного сахара является сортовой особенностью корнеплодов сахарной свеклы. Подбирая оптимальные гибриды сахарной свеклы для конкретной зоны возделывания, возможно снизить потери сахара при переработке корнеплодов.

Литература

- 1. Зубенко, В.Ф. Улучшение технологических качеств сахарной свеклы [Текст]: учеб.пособие / В.Ф. Зубенко, К.А. Маковецкий, А.В. Устименко-Бакумовский. Киев: Урожай, 1989.
- 2. Ионицой, Ю.С. Технологические качества корнеплодов сахарной свеклы современных гибридов [Текст] / Ю.С. Ионицой // Сахарная свекла. -2006. №9. -C.26-29.
- 3. Справочник свекловода Башкортостана [Текст]: справочник / Р.Р. Исмагилов [и др.]. Уфа: Гилем, 2009.
- 4. Сахарная свекла [Текст]: учебник / Д. Шпаар [и др.]; под ред. Д. Шпаара. М.: ИД ООО «DLV АГРОДЕЛО», 2009.
- 5. Hoffmann C. Zuckerrüben als Rohstoff. Die technische Qualität als Voraussetzung für eine effiziente Verarbeitung [Text] / Hoffmann C. WeenderDruckerei GmbH &B Co. KG, Göttingen. : Saur, 2006. $1-200 \, \mathrm{s}$.
- 6. K, Buchholz. Neubewertung des technicshen Wertes von Zuckerrüben [Text] / Buchholz K. et al. Zuckerind.120, Nr. 2: Saur, 1995. 113-121 s.

УДК 633.6.63.631.9.2

ГУСТОТА СТОЯНИЯ РАСТЕНИЙ САХАРНОЙ СВЕКЛЫ И СОДЕРЖАНИЕ ОЧИЩЕННОГО САХАРА КОРНЕПЛОДОВ В УСЛОВИЯХ РЕСПУБЛИКИ БАШКОРТОСТАН

Исламгулов Д.Р., к.с-х.н, доцент, Бикметов И.Р., аспирант ФГБОУ ВПО Башкирский ГАУ, г. Уфа, Российская Федерация

Ввеление

На экономику производства сахарной свеклы, кроме урожайности существенно влияют и технологические качества. Под технологическими