К. Калачев

(Республика Беларусь)

Научный руководитель: И.И. Гургенидзе, к.э.н., доцент Белорусский государственный аграрный технический университет

ОБОСНОВАНИЕ ЭКОНОМИЧЕСКОЙ ЦЕЛЕСООБРАЗНОСТИ ПРИМЕНЕНИЯ УЛЬТРАЗВУКОВОЙ УСТАНОВКИ ДЛЯ МОЙКИ ДЕТАЛЕЙ В ОСП СОВХОЗ «МИНСКИЙ» ОАО «ДОРОРС»

Очистка поверхности с помощью ультразвука относится к высокоэффективным и производительным способам очистки.

Достоинствами этого способа являются: возможность быстро удалять с поверхности различные виды загрязнений; способность очищать детали сложной формы, имеющие труднодоступные полости и каналы; применимость различных моющих средств; возможность проведения процесса очистки при комнатной температуре или умеренном нагреве; простота механизации и автоматизации процесса.

Ультразвуковые волны, распространяющиеся в моющем растворе от источника излучения, оказывают на поверхность очищаемой детали давление, обусловленное кавитационными явлениями.

Кавитация проявляется в разрывах жидкости под действием звуковой волны с образованием мелких пузырьков (50-500 мкм), заполненных парами моющей жидкости. Часть пузырьков после кратковременного существования (20-50 мкс) захлопывается, создавая при этом местные гидравлические удары, достигающие давления в сотни атмосфер.

Большинство современных установок ультразвуковой очистки деталей изготавливают на основе плоских или стержневых излучателей, обеспечивающих очистку лишь тех поверхностей деталей, которые обращены к преобразователю и находятся вблизи него.

Для очистки простых по форме деталей применяют частоты 20-25 к Γ ц, сложных и мелких – 200-1600 к Γ ц.

Так как для очистки используют комбинированное воздействие ультразвука и моющих средств, то трудоемкость снижается в 2-10 раз, уменьшается расход химикатов, повышается качество мойки.

Расчет экономической части выполнен на основе сравнения двух вариантов:

- 1. За базовый вариант принимается используемая в хозяйстве мойка деталей путем погружения в ванну с подогреваемой моющей жидкостью;
- 2. За проектируемый вариант принимается используемая в хозяйстве мойка деталей путем погружения в ванну с подогреваемой жидкостью, в которой возбуждают ультразвуковые колебания.

Расчеты выполнены в ценах по состоянию на 1 января 2016 г.

Результаты исследования представлены в таблицах 1 и 2.

Таблица 1 – Эксплуатационные издержки

Показатели	Вариант				
	базовый (1)		новый (2)		Изм.
	тыс. руб.	%	тыс. руб.	%	(2-1)
Расходы на оплату труда, тыс. руб.	13395,1	44,5	7192,9	33,9	-6202,2
Отчисления на социальные нужды, тыс. руб.	4018,53	13,7	2157,8	10,2	-1860,73
Амортизац. отчисл., тыс. руб.	960,3	3,1	3366,41	15,9	2406,11
Отчисления на техобслуж. и ремонт, тыс. руб.	611,1	2	2142,2	10	1531,1
Затраты на электроэнергию, тыс. руб.	9639,9	32	5355	25,2	-4284,9
Прочие издержки, тыс. руб.	1431	4,7	1010,7	4,8	-420,3
Итого, тыс. руб.	30056,1	100	21225	100	-8831,1

Из таблицы 1 следует, что применение ультразвуковой установки для мойки деталей позволяет значительно снизить расходы на оплату труда и электроэнергию, соответственно и суммарные эксплуатационные издержки, что увеличит прибыль.

Таблица 2 – Технико-экономические показатели проекта

	Domino	II	
Показатели	Варианты		Изм.
	базовый (1)	новый (2)	± (2-1)
Годовой объем производства, кг	546480	546480	_
Годовое время работы оборудования, ч	1518	506	-1012
Затраты труда, ч/год	1684,5	695,8	-988,7
Производительность труда, кг/год	324,4	785,39	460,9
Установленная мощность установки, кВт	4,5	7,5	3
Потребляемая электроэнергия, кВт ч/год	5464,8	3036	-2428,8
Энергоемкость процесса, кВт ч/кг	0,01	0,0055	-0,0045
Балансовая стоимость заменяемого	8730	8730	-
оборудования, тыс. руб.	8730	8730	
Капиталовложения, тыс. руб.	_	21873,8	21873,8
Текущие издержки, тыс. руб./год	30056,1	21225	-8831,1
Прирост прибыли, тыс. руб./год	_	7241,5	_
Годовой доход, тыс. руб.	_	9647,6	_
Чистый дисконтированный доход за		24164,5	
расчетный период, тыс. руб.	_	24104,3	_
Срок окупаемости капиталовложений, лет			
- статический;	_	2,27	_
- динамический;	_	3	_
Индекс доходности проекта, относит. ед.	_	2,1	_

Ставка дисконтирования E=0,15. Расчетный период T=14. Срок окупаемости капиталовложений составит 2,27 года.