Если $\alpha_2 = \lambda \cdot Nu / D$, то тогда

$$Q = \lambda \frac{Nu}{D} F_{TB.Y} \Delta t \tag{12}$$

Таким образом, зная значения, мы получаем новое обобщённое критериальное уравнение (10), из которого определяется значение и, как следствие, величина Q из уравнения (11).

Из уравнений следует, что интенсифицировать процесс обжарки можно следующим образом: повысив разность температур; увеличив поверхность теплообмена; изготовив барабан из материала с максимальной теплопроводностью; повысив интенсивность перемешивания материала внутри барабана; интенсифицировав процесс теплоотдачи от стенки барабана к нагреваемым частицам; снизив тепловые потери в окружающую среду.

На основании вышеизложенных путей интенсификации процесса обжарки в аппарате барабанного типа, предложены следующие технические решения по усовершенствованию обжарочного аппарата:

- выполнение вала барабана в виде трубы с наружной спиралью, а барабана с внутренней спиралью, наружная и внутренняя спирали имеют противоположное направление витков, при этом площадь нормального сечения спирали барабана равна площади нормального сечения спирали барабана, что позволит интенсифицировать процесс перемешивания продукта в аппарате;
- использование в процессе обжарки продукта насыщенного пара низкого давления (до 150 кПа), который периодически впрыскивается в барабан через отверстия в полом валу, что позволит не только улучшить органолептические показатели солода (убрать горечь), но и интенсифицировать процесс теплоотдачи от стенки барабана к нагреваемым частицам;

применение в конструкции аппарата теплоизолированного кожуха (на основе современных материалов), что снизит тепловые потери в окружающую среду.

УДК: 664.8.039:582.736 (063)

Шипарева М.Г., кандидат технических наук,

Молчанова Е.Н., кандидат биологических наук, Кочиева Д.Р.

Московский государственный университет пищевых производств, Российская Федерация

ВЛИЯНИЕ ИНФРАКРАСНОЙ ОБРАБОТКИ НА АКТИВНОСТЬ ЛЕКТИНОВ СЕМЯН БОБОВЫХ КУЛЬТУР

Бобовые культуры являются перспективным сырьем в пищевой промышленности. Они обладают уникальным химическим составом — содержат большое количество белка, пищевых волокон, минеральных веществ и витаминов, биологически активных соединений и мало — жира. Бобовые популярны во всем мире, благодаря, широким возможностям для использования. В основном большое потребление бобовых наблюдалось в развивающихся странах в виду их доступности, но в настоящее время и страны с высоким уровнем дохода проявляют интерес к данной культуре из-за ее полезных свойств. Так, например, согласно статистическим данным в странах Евросоюза с 2010 по 2014 год были разработаны почти 3,5 тыс. новых продуктов с использованием различных бобовых. Из новых продуктов более 35% содержали нут, 25% — приходилось на фасоль.

В последние годы Россия стабильно увеличивает урожаи зернобобовых. Например, производство нута, который в значительных масштабах начал возделываться лишь недавно – с 1998 года, в настоящее время составляет более 500 тыс. т. [1].

В то же время семена бобовых являются источником не только полезных веществ, но и различных антиалиментарных соединений, таких как лектины, ингибиторы трипсина, α -амилазы и др. Поэтому при разработке изделий на их основе необходимо применять такие способы обработки, которые смогли бы снизить антипитательные факторы до безопасного уровня.

В данном исследовании изучали влияние термической обработки на активность лектинов бобовых. Лектины — это гликопротеины, обладающие свойством специфически связывать остатки углеводов на поверхности клеток. В частности они способны склеивать эритроциты крови, поэтому их обычно называют гемагглютининами. Попадание лектинов в организм человека с продуктами растительного происхождения привести к повреждению слизистой оболочки желудочно-кишечного тракта. Известно, что многие лектины не поддаются действию пищеварительных ферментов и также устойчивы к тепловой обработке, вызывая пищевые отравления [2]. Их наличие является одним из препятствий для применения муки из бобовых в качестве белкового обогатителя в различных выпеченных изделиях.

В качестве образцов использовали некоторые виды фасоли (Phaseolous vulgaris): белую, красную пеструю Кидни, черную и нут (Cicer arietinum).

Традиционный способ обработки бобовых культур включает в себя замачивание семян и последующую их гидротермическую обработку. При использовании семян бобовых для обогащения хлебобулочных и мучных кондитерских изделий не всегда технологично применять их в отварном виде из-за высокой влажности (около 60%). Использование же сырой муки небезопасно из-за присутствия антипитательных веществ.

Одним из перспективных методов термической обработки является инфракрасный (ИК) нагрев. Ранее были установлены режимы ИК-обработки семян черной фасоли и нута при мощности лучистого потока

ПЕРЕРАБОТКА И УПРАВЛЕНИЕ КАЧЕСТВОМ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ПРОДУКЦИИ

 $E=31 \text{ кВт/м}^2$ – увлажнение семян черной фасоли и нута до влажности 17 % и последующий ИК-нагрев в течение 40 и 60 с соотвественно [3].

В дальнейшем проводили исследования влияния ИК-нагрева на гемагтлютинирующую активность лектинов.

Гемагглютинирующую активность лектинов бобовых определяли по реакции агглютинации эритроцитов крови человека. Для сравнения данного показателя дополнительно использовали Фасоль Белую и красную пеструю Кидни (Phaseolous vulgaris), которые имеют наиболее высокие показатели гемагглютинации. Лектины извлекали буферно-солевым раствором (pH=7,2 \pm 0,2), содержащим 0,15 M NaCl. Экстракты смешивали с 2 %-ной суспензией эритроцитов (1:1) в ячейках планшет. Уровень гемагглютинирующей активности оценивали визуально после инкубации в течение 1,5 часов при 25 °C в по степени осаждения и склеивания эритроцитов. За одну гемагглютинирующую единицу (ГАЕ) принимали наименьшее количество лектинов, дающее четко выраженную агглютинацию.

Результаты исследования показали наибольшую активность лектинов в черной фасоле, которые превышают показатели красной и белой фасоли в 4 и 8 раз соответственно (таблица 1).

Таблица 1 – Гемагглютинирующая акт	ивность лектинов
------------------------------------	------------------

Объект исследования, вид обработки	Титр гемагглютинации, ГАЕ/см ³	Общая активность лектинов, ГАЕ/г
Фасоль красная пестрая Кидни исходная	128	5120
Фасоль красная пестрая Кидни отварная	отсутствие агглютинации	отсутствие агглютинации
Фасоль Белая исходная	64	2560
Фасоль Белая отварная	отсутствие агглютинации	отсутствие агглютинации
Нут исходный	отсутствие агглютинации	отсутствие агглютинации
Нут ИК-обработка	отсутствие агглютинации	отсутствие агглютинации
Нут отварной	отсутствие агглютинации	отсутствие агглютинации
Черная фасоль исходная	512	20480
Черная фасоль ИК-обработка	512	20480
Черная фасоль отварная	отсутствие агглютинации	отсутствие агглютинации

Замачивание в течение 8 часов и термическая обработка (отваривание до готовности при температуре 98–100°С в течение 60 минут) различных видов фасолей привела к полной инактивации лектинов. В то же время ИК-обработка черной фасоли оказалась не эффективна и показатели гемагглютинации в данном образце не изменились. Таким образом ИК-нагрев не может быть рекомендован для семян бобовых с высокой активностью лектинов и требуется совершенствование данного способа обработки — возможно необходимо добавление стадии темперирования.

Результаты исследования показали отсутствие агглютинации эритроцитов крови в образцах нута, что расширяет его применение в ИК-обработанном виде.

Для нута выбранный режим ИК-нагрева достаточен для снижения активности антипитательных факторов до безопасного уровня и позволяет с точки зрения безопасности использовать данное сырье в виде муки для тестовых полуфабрикатов мучных кондитерских и кулинарных изделий.

Список использованной литературы

- 1. Мосеев В. Главные драйверы горох и нут. [электронный ресурс]. Режим доступа: http://www.agroinvestor.ru/markets/article/22978-glavnye-drayvery-gorokh-i-nut/ (дата обращения 20.02.2017 г.).
- 2. Петибская В.С. Соя: Химический состав и использование / В.С. Петибская; под ред. В.М. Лукомца. Майкоп: ОАО «Полиграф-ЮГ», 2012.-432 с.
- 3. Шипарева М.Г. Инфракрасная обработка бобовых культур М.Г. Шипарева, Е.Н. Молчанова, В.В. Кирдяшкин // Сборник материалов научно-практической конференции "Качество и биологическая безопасность пищевых продуктов", научно-практическая конференция "Экспертиза, оценка качества, подлинности и безопасности пищевых продуктов", научно-практическая конференция "Экономические аспекты пищевых производств". Москва: ИЦ МГУПП, 2015. С.159–163.