Секция 1. ПЕРЕРАБОТКА И ХРАНЕНИЕ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ПРОДУКЦИИ

- 2. Lowther, W., Lorick, K., Lawrence, S., Yeow, W.-S., Expression of biologically active human interferon alpha 2 in Aloe vera // Trans-genic Res. -2012. Vol. 21. P. 1349-1357.
- 3. Sindarovska Y.R., Gerasymenko I.M., Sheludko Y.V. et al. Production of human interferon alfa 2b in plants of nicotiana excelsior by agrobacterium mediated transient expression. ISSN 0564–3783 // Цитология и генетика. 2010. № 5. С. 60–64.
- 4. Luchakivskaya Y., Kishchenko O., Gerasymenko I. et al. High-level expression of human interferon alpha–2b in transgenic carrot (Daucus carota L.) plants // Plant Cell Rep. 2011. Vol. 30. P. 407–415.
- 5. Ohya K., Matsumura T., Ohashi K. et al. Expression of two subtypes of human IFN-alpha in transgenic potato plants // J. Interferon Cytokine Res. 2001. Vol. 21. P. 595–602.
- 6. Li J., Chen M., Liu X.-W. et al. Transient expression of an active human interferon-beta in lettuce // Sci. Hortic. 2007. Vol. 112. P. 258–265.
- 7. Chen T.L., Lin Y.L., Lee Y.L. et al. Expression of bioactive human interferon-gamma in transgenic rice cell suspension cultures // Transgenic Res. 2004. Vol. 13. P. 499–510.
- 8. Hosseini S., Shams–Bakhsh M., Salamanian A., Yeh S. Expression and purification of human interferon gamma using a plant viral vector // Progress in Biological Sciences. 2012. Vol. 2. P. 104–115.

УДК 641.56

Корзун В.Н., доктор медицинских наук, профессор

Институт общественного здоровья им. А.Н. Марзеева НАМН Украины, г. Киев

Антонюк И.Ю., кандидат технических наук, доцент, Медведева А.А., кандидат технических наук, доцент Киевский национальный торгово-экономический университет, Украина

ТЕХНОЛОГИЯ СПЕЦИАЛЬНЫХ ПИЩЕВЫХ ПРОДУКТОВ ДЛЯ ПРОФИЛАКТИКИ МИКРОЭЛЕМЕНТОЗОВ

Изучение пищевого статуса населения Украины, России и Белоруссии свидетельствует о тенденции его ухудшения. За последние годы постепенно снизилось потребление пищевых продуктов животного происхождения, овощей и фруктов, и, наоборот, повысилось – хлеба, круп, макаронных, кондитерских изделий, сахара. Все это привело к снижению обеспеченности белками, витаминами, макро- и микроэлементами, как следствие, – большинство населения имеет отклонение в состоянии здоровья и нуждается в обеспечении диетическим и лечебно-профилактическим питанием. Исследование последних лет показали, что структура питания изменилась, вследствие чего в ежедневном пищевом рационе населения существует дефицит витаминов: А, С, Е, D, В₁, В₂; наблюдается недостаточное употребление макро- и микроэлементов: кальция, калия, фосфора, магния, йода, селена, а также белков и ПНЖК [1].

Дефицит йода и других микроэлементов в рационе питания способствует развитию ряда заболеваний щитовидной железы и служит причиной серьезных изменений обмена веществ, которые приводят к нарушению репродуктивной функции, высокой перинатальной смертности, отставанию в физическом и психическом развитии, интеллектуальной вялости, задержке физического и психомоторного развития, потери трудоспособности и др. [2].

Даже незначительный недостаток микроэлементов во время беременности способен вызвать в дальнейшем соматические и нейропсихические расстройства у ребенка. Материнский организм является единственным источником йода для плода, в связи с чем достаточное йодное обеспечение беременной женщины приобретает особое значение. Поэтому вопросы диагностики, профилактики и лечения йоддефицитых заболеваний имеют большое значение и касаются не только врачей, а всего общества [3].

Сложные биохимические процессы обмена йода в организме с дальнейшим синтезом гормонов щитовидной железы (при достаточном поступлении йода) могут быть нарушены при недостатке других микроэлементов, в том числе селена, железа, кобальта, меди, цинка и т.п., белков и отдельных аминокислот. Этим объясняется недостаточная эффективность использования монопрепаратов йода в профилактике йоддефицитных заболеваний. Несмотря на ведущую роль дефицита йода в развитии йоддефицитных заболеваний, зобная эндемия в наше время имеет смешанный генез и является результатом сложного взаимодействия эндо- и экзогенных факторов.

По определению ВООЗ, йоддефицитные заболевания - это все патологические состояния, развивающиеся в популяции в результате йодного дефицита, которые могут быть предотвращены при адекватном потреблении йода. Когда в организм поступает недостаточное количество йода, щитовидная железа еще способна вырабатывать необходимое количество гормонов за счет своих внутренних резервов. Но если дефицит йода сохраняется достаточно долго, происходит срыв механизмов адаптации с последующим развитием йоддефицитных заболеваний.

Базовым, универсальным и экономичным методом массовой профилактики йоддефицитных заболеваний является употребление йодированной соли. Однако, несмотря на обеспечение населения такой солью, количество йоддефицитных заболеваний в Украине, как и в Белоруссии и России, не уменьшается.

Сегодня становится очевидным, что ликвидация дефицита одного из микроэлементов не может полностью решить проблему. У значительной части населения недостаток йода наблюдается с дефицитом белка, селена, железа, меди, цинка и других микроэлементов, которые принимают участие в обеспечении функции щитовидной железы.

ПЕРЕРАБОТКА И УПРАВЛЕНИЕ КАЧЕСТВОМ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ПРОДУКЦИИ

Мировой и отечественный опыт показывает, что наиболее эффективным и целесообразным с экономической, социальной, гигиеничной и технологической точек зрения решением проблемы, является разработка и налаживания производства разных специальных пищевых продуктов, содержащих или дополнительно обогащенных дефицитными нутриентами. При этом нецелесообразно обогащать продукт только одним, наиболее дефицитным нутриентом.

Поэтому наилучшая форма обеспечения населения стабильным йодом и рядом других микроэлементов – это употребления морской рыбы, морских водорослей, препаратов и пищевых продуктов с их использованием. В морях Украины существуют большие запасы бурой водоросли – цистозиры, в которой содержится (на сухое вещество) йод (75–175 мг/100г), селен (65–95 мг/100г), железо (15–30 мг/100г), кобальт (3,3–3,5 мг/100г) и другие микроэлементы. Кроме того, в ее составе много полисахаридов – альгиновой кислоты, фукоидина, йодсодержащих аминокислот и витаминов.

Зостера признана функциональным продуктом потому, что ее питательные составляющие более концентрированы, чем в других продуктах, растениях, зернах и травах. На переваривание зостеры нужно намного меньше энергии, чем на переваривание других продуктов. Причиной этого служит то, что зостера не содержит клеток с твердыми молекулярными стенками. Ее клеточная стенка состоит из мягкого мукополисахарида. Они перевариваются на 85–95%, тем самым повышая усвояемость белка.

Ученые кафедры технологии и организации ресторанного хозяйства Киевского национального торговоэкономического университета совместно с Институтом общественного здоровья им. А.Н. Марзеева НАМН Украины ведут исследования по созданию новых функциональных пищевых продуктов для профилактики йоддефицитных заболеваний. Разработаны технологии закусок, супов, основных рыбных и мясных блюд, десертов с использованием морских водорослей и продуктов их переработки. Результаты проведенных исследований доказывают эффективность использования разработанных продуктов в рационах питания критических слоев населения, которые нуждаются в дополнительных усилиях (беременные, кормящие женщины, дети и подростки, больные гипертонией, нефрозами и др. заболеваниями), которым рекомендуется ограничить употребление кухонной соли. Эффективность проведенных мер подтверждают данные о функциональном состоянии щитовидной железы до и после употребления диетических добавок из морских водорослей: количество йоддефицитных заболеваний уменьшилась в 1,6–7 раз (в разных районах и селах).

Перспективами дальнейших исследований в этом направлении являются расширение ассортимента продуктов питания с использованием цистозиры, ламинарии, зостеры и других разнообразных продуктов переработки морских водорослей, разработка и утверждение нормативной документации, а также проведение медико-биологических исследований с целью подтверждения целесообразности использования созданных продуктов в профилактике йоддефицитных заболеваний как у взрослых, так и у детей.

Список использованной литературы

- 1. Причины изменений в структуре питания современного человека. Здоровье и организм: полезные советы. Режим доступа: http://opportunity.com.ua/teoriya/prichiny-izmenenij-v-strukture-pitaniya-sovremennogo-cheloveka.html
- 2. Микроэлементозы человека: этиология, классификация, органопатология. / [Авцын А. П., Жаворонков А. А., Риш М. А. и др.] М. : Медицина, 1991. 46 с.
- 3. Микронутриенты в питании здорового и больного человека / [Тутельян В.А., Спиричев В.Б., Суханов Б.П., Кудашева В.А.]. М. : Колосья, 2002. 424 с.

УДК 664.1.037

Кулаковский В.В., Литвяк В.В., доктор технических наук, кандидат химических наук РУП «Научно–практический центр Национальной академии наук Беларуси по продовольствию», г. Минск

ПРОИЗВОДСТВО САХАРА В РЕСПУБЛИКЕ БЕЛАРУСЬ

Сахар – это одно из самых «сладких» и важных изобретений человека. Сложно представить современный быт без этого продукта. Существует немало споров о пользе и вреде этого продукта, но ясно одно, человек без сахара, в настоящее время, обойтись не может.

Первый сахар получали из стеблей сахарного тростника, растения, в диком виде росшего в Индии еще до нашей эры. Тем не менее, сахар ещё долго, вплоть до XIX века, оставался предметом роскоши.

Для России первым существенным шагом стало создание Петром I «сахарной палаты», которая была открыта в начале XVIII века, но сырьё для производства сахара ввозилось из-за границы. В 1802 году стало налаживаться производство сахара из отечественного сырья – сахарной свёклы. В 1897 году в России работали 236 заводов [1].

Общий вид современной принципиальной технологической схемы производства сахара из сахарной свеклы и сахарного тростника [2] представлен на рисунке 1.